Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@ We are arbitrarily numbering the constants as $C_{1}$, $C_{2}$, etc., mostly bas
| [45](https://teorth.github.io/optimizationproblems/constants/45a.html) | Density of odd integers that are the sum of a prime and a power of two | 0.107648 | 0.490941 |
| [46](https://teorth.github.io/optimizationproblems/constants/46a.html) | Fourier restriction constant for the 2-sphere | 3 | $\frac{22}{7}\approx 3.142857$ |
| [47](https://teorth.github.io/optimizationproblems/constants/47a.html) | Centered Hardy-Littlewood maximal constant in dimension $2$ | $\frac{11+\sqrt{61}}{12}\approx 1.5675208$ | 9 |
| [49](https://teorth.github.io/optimizationproblems/constants/49a.html) | Erdős–Szemerédi $3$-sunflower-free capacity | >1.551 (>=1.554 unpublished) | $\frac{3}{2^{2/3}} \approx 1.88988$ |


## Recent progress
Expand Down
91 changes: 91 additions & 0 deletions constants/49a.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Erdős–Szemerédi $3$-sunflower-free capacity

## Description of constant

A family of three distinct sets $A,B,C$ is a **$3$-sunflower** (or $\Delta$-system) if
$$
A\cap B \ =\ A\cap C \ =\ B\cap C.
$$
A family of sets is **sunflower-free** if it contains no $3$-sunflower (equivalently, no sunflower of any size $\ge 3$).

Let $[n]:=\{1,2,\dots,n\}$ and let $f(n)$ denote the maximum size of a sunflower-free family $\mathcal{F}\subseteq 2^{[n]}$.
Define
$$
C_{49}\ :=\ \mu^{\mathrm S}\_3\ :=\ \limsup\_{n\to\infty} f(n)^{1/n}.
$$
A standard tensor power argument shows that the limsup is in fact a limit:
$$
\mu^{\mathrm S}\_3\ =\ \lim\_{n\to\infty} f(n)^{1/n}
$$
(see e.g. [TZ2025, (1.2)]).

### Existence of the limit

The limit exists. One convenient way to see this is to reduce to **uniform** families and then apply a tensor-power (direct sum) argument (see also [TZ2025]).

For $0\le r\le n$, let $f\_{r}(n)$ denote the maximum size of a sunflower-free $r$-uniform family $\mathcal{F}\subseteq \binom{[n]}{r}$, and set
$$
g(n)\ :=\ \max_{0\le r\le n} f\_{r}(n).
$$
Then
$$
g(n)\ \le\ f(n)\ \le\ (n+1)\,g(n),
$$
since any family $\mathcal{F}\subseteq 2^{[n]}$ decomposes as the disjoint union of its uniform layers $\mathcal{F}\cap\binom{[n]}{r}$ and one layer must have size at least $\lvert\mathcal{F}\rvert/(n+1)$.

Now let $X,Y$ be disjoint sets with $\lvert X\rvert=n$ and $\lvert Y\rvert=m$, and let $\mathcal{F}\subseteq \binom{X}{r}$ and $\mathcal{G}\subseteq \binom{Y}{s}$ be sunflower-free. Define the product family
$$
\mathcal{F}\otimes\mathcal{G}\ :=\ \{A\cup B:\ A\in\mathcal{F},\ B\in\mathcal{G}\}\ \subseteq\ \binom{X\cup Y}{r+s}.
$$
Then $\mathcal{F}\otimes\mathcal{G}$ is sunflower-free. Indeed, suppose that three distinct members $A\_i\cup B\_i$ ($i=1,2,3$) form a $3$-sunflower in $X\cup Y$. Since $X$ and $Y$ are disjoint, the equalities
$$
(A_1\cup B_1)\cap(A_2\cup B_2)\ =\ (A_1\cup B_1)\cap(A_3\cup B_3)\ =\ (A_2\cup B_2)\cap(A_3\cup B_3)
$$
imply
$$
A_1\cap A_2\ =\ A_1\cap A_3\ =\ A_2\cap A_3
$$
and
$$
B_1\cap B_2\ =\ B_1\cap B_3\ =\ B_2\cap B_3.
$$
If two of the $A\_i$ coincide, say $A\_1=A\_2$, then $A\_1=A\_1\cap A\_2=A\_1\cap A\_3\subseteq A\_3$, and uniformity forces $A\_1=A\_3$.
Thus either $(A\_1,A\_2,A\_3)$ is a triple of distinct sets forming a $3$-sunflower in $\mathcal{F}$, or all three $A\_i$ coincide; similarly for the $B\_i$.
Since the unions $A\_i\cup B\_i$ are distinct, at least one of the triples $(A\_1,A\_2,A\_3)$ or $(B\_1,B\_2,B\_3)$ consists of three distinct sets, giving a contradiction.

Consequently $g(n+m)\ge g(n)g(m)$, so $\log g(n)$ is superadditive. By Fekete's lemma, the limit $\lim\_{n\to\infty} g(n)^{1/n}$ exists. Since $f(n)$ and $g(n)$ differ by at most the factor $(n+1)$, it follows that $\lim\_{n\to\infty} f(n)^{1/n}$ exists as well.

Trivially $1\le \mu^{\mathrm S}\_3 \le 2$.

## Known upper bounds

| Bound | Reference | Comments |
| ----- | --------- | -------- |
| $2$ | Trivial | $f(n)\le 2^n$. |
| $\frac{3}{2^{2/3}} \approx 1.8898815748$ | [NS2017] | They prove $\lvert\mathcal{F}\rvert \le 3(n+1) \sum\_{k=0}^{\lfloor n/3\rfloor} \binom{n}{k} \le \left(\frac{3}{2^{2/3}}\right)^{n(1+o(1))}$ for sunflower-free $\mathcal{F}\subseteq 2^{[n]}$. |

## Known lower bounds

| Bound | Reference | Comments |
| ----- | --------- | -------- |
| $1$ | Trivial | $f(n)\ge 1$. |
| $>1.551$ | [DEGKM1997] | This lower bound is obtained from a construction of Deuber--Erdős--Gunderson--Kostochka--Meyer. The numerical value is stated in [FPP2024], [TZ2025]. |
| $\ge 1.554$ (unpublished) | [NS2017] | The arXiv preprint version of [NS2017] records $\mu^{\mathrm S}\_3\ge 1.554$, citing an unpublished manuscript of the first author. |

## Additional comments and links

- Erdős and Szemerédi conjectured that $\mu^{\mathrm S}\_3<2$ [ES1978]; this was proved by Naslund--Sawin via the polynomial method. [NS2017]
- This constant is also called the Erdős–Szemerédi $3$-sunflower-free capacity; see e.g. [NS2017], [TZ2025].
- [Wikipedia page on sunflowers](https://en.wikipedia.org/wiki/Sunflower_(mathematics))

## References

- [DEGKM1997] Deuber, W. A.; Erdős, P.; Gunderson, D. S.; Kostochka, A. V.; Meyer, A. G. *Intersection statements for systems of sets.* J. Combin. Theory Ser. A **79** (1997), 118--132. DOI: 10.1006/jcta.1997.2778.
- [ES1978] Erdős, P.; Szemerédi, E. *Combinatorial properties of systems of sets.* J. Combin. Theory Ser. A **24** (1978), 308--313. DOI: 10.1016/0097-3165(78)90060-2.
- [FPP2024] Frankl, Peter; Pach, János; Pálvölgyi, Dömötör. *Odd-sunflowers.* J. Combin. Theory Ser. A **206** (2024), 105889. DOI: 10.1016/j.jcta.2024.105889. [arXiv:2310.16701](https://arxiv.org/abs/2310.16701).
- [NS2017] Naslund, Eric; Sawin, William F. *Upper bounds for sunflower-free sets.* Forum Math. Sigma **5** (2017), e15. DOI: 10.1017/fms.2017.12. [arXiv:1606.09575](https://arxiv.org/abs/1606.09575).
- [TZ2025] Tang, Quanyu; Zhang, Shengtong. *Harmonic LCM patterns and sunflower-free capacity.* [arXiv:2512.20055](https://arxiv.org/abs/2512.20055) (2025).

## Contribution notes

Prepared with assistance from ChatGPT 5.2.