Skip to content

redislabs-training/lab-contexteng

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Context Engineering with Redis & Langchain

License: MIT Language

✨ A comprehensive course exploring context engineering using Redis and LangChain by building a progressively more complex agent ✨

Key Technologies

Technology Purpose
Redis Vector storage, semantic search, caching
RedisVL Vector search library with FilterQuery
LangGraph Stateful agent workflows
LangChain LLM application framework
Redis Agent Memory Server Working and long-term memory management for agents
OpenAI Language model for reasoning

Progressive Agents

The progressive_agents/ directory contains a learning path from basic RAG to production-ready agents:

graph LR
    S0[Stage 0: <br/>System Context] -->
    S1[Stage 1: <br/>Baseline RAG] --> S2[Stage 2: <br/>Context Engineered RAG]
    S2 --> S3[Stage 3: <br/>From RAG to Agent]
    S3 --> S4[Stage 4: <br/>React Agent + Hybrid Search]
    S4 --> S5[Stage 5<br/>Working Memory]
    S5 --> S6[Stage 6<br/>Long-term Memory]
Loading
Stage Key Feature Overview
Intro Getting Acquainted An overview of context engineering
0 System Context Constructing effective system prompts
1 Baseline RAG Exploring a basic RAG that consumes Raw JSON context
2 Data Engineering Data engineered RAG with 50% less token usage
3 Full Agent A full LangGraph-based agent with intent classification, quality and eval
4 Hybrid Search + ReAct Visible reasoning trace and hybrid search
5 Working Memory Session-based conversation history
6 Long-term Memory Complete agent: memory + reasoning + tools