Product Training Manual Chatbot is an intelligent, locally hosted question-answering system built with Python, Flask, and Sentence Transformers. It reads a training manual and a QA dataset to provide contextual and accurate responses. Ideal for onboarding, training, or support scenarios within organizations.
- 🔍 Semantic search using
sentence-transformers - 📄 Supports .docx training manuals
- 📁 Uses a JSON QA dataset for predefined responses
- 🧠 Fallback to vector similarity-based retrieval if no direct match
- 🌐 Flask-powered web interface (HTML frontend)
- 🧪 Validation capability to test model accuracy
.
├── AC_chatbot.py # Main application script
├── qa_dataset.json # Predefined QA pairs (train & validation)
├── training_manual.docx # Source manual content
├── templates/
│ └── index.html # Frontend UI (Flask template)
├── static/ # (Optional) Styles or assets
├── requirements.txt # Python dependencies
└── README.md # Project documentation
git clone https://github.com/yourusername/ac-chatbot.git
cd ac-chatbotpython -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activatepip install -r requirements.txtIf
requirements.txtdoesn't exist, you can generate it:pip freeze > requirements.txt
- Replace
training_manual.docxwith your own document. - Update
qa_dataset.jsonwith your own Q&A pairs.
python AC_chatbot.pyVisit http://localhost:5000 in your browser.
When you start the app, it will automatically validate performance using the "validation" section in qa_dataset.json and print the accuracy to the console.
- Flask
- sentence-transformers
- docx
- torch
- numpy
- (see
requirements.txtfor the full list)
MIT License
- Hugging Face – Sentence Transformers
- Flask Web Framework
- Manjish Naik