Skip to content

📚这个仓库是在arxiv上收集的有关VLN,VLA,World Model,SLAM,Gaussian Splatting,非线性优化等相关论文。每天都会自动更新!issue区域是最新10篇论文

Notifications You must be signed in to change notification settings

luohongk/Embodied-AI-Daily

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

537 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 Embodied-AI-Daily

Automatically fetches the latest arXiv papers on VLN · VLA · SLAM · 3D · Embodied AI

每日更新 来源:arXiv 论文主题:VLN·VLA·SLAM·3D GitHub Stars 作者:luohongk 主页:GitHub


📌 About

This project automatically fetches the latest papers from arXiv based on predefined keywords.

  • Each section in the README corresponds to a search keyword.
  • Only the most recent papers are kept (up to 100 per keyword).
  • Click Watch (👀) on the repo to get daily email notifications.

Last update: 2026-02-08


Vision and Language Navigation

Title Date Abstract Comment
User-Feedback-Driven Adaptation for Vision-and-Language Navigation 2026-02-04
Show

Real-world deployment of Vision-and-Language Navigation (VLN) agents is constrained by the scarcity of reliable supervision after offline training. While recent adaptation methods attempt to mitigate distribution shifts via environment-driven self-supervision (e.g., entropy minimization), these signals are often noisy and can cause the agent to amplify its own mistakes during long-horizon sequential decision-making. In this paper, we propose a paradigm shift that positions user feedback, specifically episode-level success confirmations and goal-level corrections, as a primary and general-purpose supervision signal for VLN. Unlike internal confidence scores, user feedback is intent-aligned and in-situ consistent, directly correcting the agent's decoupling from user instructions. To effectively leverage this supervision, we introduce a user-feedback-driven learning framework featuring a topology-aware trajectory construction pipeline. This mechanism lifts sparse, goal-level corrections into dense path-level supervision by generating feasible paths on the agent's incrementally built topological graph, enabling sample-efficient imitation learning without requiring step-by-step human demonstrations. Furthermore, we develop a persistent memory bank mechanism for warm-start initialization, supporting the reuse of previously acquired topology and cached representations across navigation sessions. Extensive experiments on the GSA-R2R benchmark demonstrate that our approach transforms sparse interaction into robust supervision, consistently outperforming environment-driven baselines while exhibiting strong adaptability across diverse instruction styles.

DV-VLN: Dual Verification for Reliable LLM-Based Vision-and-Language Navigation 2026-01-26
Show

Vision-and-Language Navigation (VLN) requires an embodied agent to navigate in a complex 3D environment according to natural language instructions. Recent progress in large language models (LLMs) has enabled language-driven navigation with improved interpretability. However, most LLM-based agents still rely on single-shot action decisions, where the model must choose one option from noisy, textualized multi-perspective observations. Due to local mismatches and imperfect intermediate reasoning, such decisions can easily deviate from the correct path, leading to error accumulation and reduced reliability in unseen environments. In this paper, we propose DV-VLN, a new VLN framework that follows a generate-then-verify paradigm. DV-VLN first performs parameter-efficient in-domain adaptation of an open-source LLaMA-2 backbone to produce a structured navigational chain-of-thought, and then verifies candidate actions with two complementary channels: True-False Verification (TFV) and Masked-Entity Verification (MEV). DV-VLN selects actions by aggregating verification successes across multiple samples, yielding interpretable scores for reranking. Experiments on R2R, RxR (English subset), and REVERIE show that DV-VLN consistently improves over direct prediction and sampling-only baselines, achieving competitive performance among language-only VLN agents and promising results compared with several cross-modal systems.Code is available at https://github.com/PlumJun/DV-VLN.

\textsc{NaVIDA}: Vision-Language Navigation with Inverse Dynamics Augmentation 2026-01-26
Show

Vision-and-Language Navigation (VLN) requires agents to interpret natural language instructions and act coherently in visually rich environments. However, most existing methods rely on reactive state-action mappings without explicitly modeling how actions causally transform subsequent visual observations. Lacking such vision-action causality, agents cannot anticipate the visual changes induced by its own actions, leading to unstable behaviors, weak generalization, and cumulative error along trajectory. To address these issues, we introduce \textsc{NaVIDA} (\textbf{Nav}igation with \textbf{I}nverse \textbf{D}ynamics \textbf{A}ugmentation), a unified VLN framework that couples policy learning with action-grounded visual dynamics and adaptive execution. \textsc{NaVIDA} augments training with chunk-based inverse-dynamics supervision to learn causal relationship between visual changes and corresponding actions. To structure this supervision and extend the effective planning range, \textsc{NaVIDA} employs hierarchical probabilistic action chunking (HPAC), which organizes trajectories into multi-step chunks and provides discriminative, longer-range visual-change cues. To further curb error accumulation and stabilize behavior at inference, an entropy-guided mechanism adaptively sets the execution horizon of action chunks. Extensive experiments show that \textsc{NaVIDA} achieves superior navigation performance compared to state-of-the-art methods with fewer parameters (3B vs. 8B). Real-world robot evaluations further validate the practical feasibility and effectiveness of our approach. Code and data will be available upon acceptance.

18 pages, 14 figures
VL-LN Bench: Towards Long-horizon Goal-oriented Navigation with Active Dialogs 2026-01-23
Show

In most existing embodied navigation tasks, instructions are well-defined and unambiguous, such as instruction following and object searching. Under this idealized setting, agents are required solely to produce effective navigation outputs conditioned on vision and language inputs. However, real-world navigation instructions are often vague and ambiguous, requiring the agent to resolve uncertainty and infer user intent through active dialog. To address this gap, we propose Interactive Instance Goal Navigation (IIGN), a task that requires agents not only to generate navigation actions but also to produce language outputs via active dialog, thereby aligning more closely with practical settings. IIGN extends Instance Goal Navigation (IGN) by allowing agents to freely consult an oracle in natural language while navigating. Building on this task, we present the Vision Language-Language Navigation (VL-LN) benchmark, which provides a large-scale, automatically generated dataset and a comprehensive evaluation protocol for training and assessing dialog-enabled navigation models. VL-LN comprises over 41k long-horizon dialog-augmented trajectories for training and an automatic evaluation protocol with an oracle capable of responding to agent queries. Using this benchmark, we train a navigation model equipped with dialog capabilities and show that it achieves significant improvements over the baselines. Extensive experiments and analyses further demonstrate the effectiveness and reliability of VL-LN for advancing research on dialog-enabled embodied navigation. Code and dataset: https://0309hws.github.io/VL-LN.github.io/

CLASH: Collaborative Large-Small Hierarchical Framework for Continuous Vision-and-Language Navigation 2026-01-23
Show

Vision-and-Language Navigation (VLN) requires robots to follow natural language instructions and navigate complex environments without prior maps. While recent vision-language large models demonstrate strong reasoning abilities, they often underperform task-specific panoramic small models in VLN tasks. To address this, we propose CLASH (Collaborative Large-Small Hierarchy), a VLN-CE framework that integrates a reactive small-model planner (RSMP) with a reflective large-model reasoner (RLMR). RSMP adopts a causal-learning-based dual-branch architecture to enhance generalization, while RLMR leverages panoramic visual prompting with chain-of-thought reasoning to support interpretable spatial understanding and navigation. We further introduce an uncertainty-aware collaboration mechanism (UCM) that adaptively fuses decisions from both models. For obstacle avoidance, in simulation, we replace the rule-based controller with a fully learnable point-goal policy, and in real-world deployment, we design a LiDAR-based clustering module for generating navigable waypoints and pair it with an online SLAM-based local controller. CLASH achieves state-of-the-art (SoTA) results (ranking 1-st) on the VLN-CE leaderboard, significantly improving SR and SPL on the test-unseen set over the previous SoTA methods. Real-world experiments demonstrate CLASH's strong robustness, validating its effectiveness in both simulation and deployment scenarios.

FantasyVLN: Unified Multimodal Chain-of-Thought Reasoning for Vision-Language Navigation 2026-01-23
Show

Achieving human-level performance in Vision-and-Language Navigation (VLN) requires an embodied agent to jointly understand multimodal instructions and visual-spatial context while reasoning over long action sequences. Recent works, such as NavCoT and NavGPT-2, demonstrate the potential of Chain-of-Thought (CoT) reasoning for improving interpretability and long-horizon planning. Moreover, multimodal extensions like OctoNav-R1 and CoT-VLA further validate CoT as a promising pathway toward human-like navigation reasoning. However, existing approaches face critical drawbacks: purely textual CoTs lack spatial grounding and easily overfit to sparse annotated reasoning steps, while multimodal CoTs incur severe token inflation by generating imagined visual observations, making real-time navigation impractical. In this work, we propose FantasyVLN, a unified implicit reasoning framework that preserves the benefits of CoT reasoning without explicit token overhead. Specifically, imagined visual tokens are encoded into a compact latent space using a pretrained Visual AutoRegressor (VAR) during CoT reasoning training, and the model jointly learns from textual, visual, and multimodal CoT modes under a unified multi-CoT strategy. At inference, our model performs direct instruction-to-action mapping while still enjoying reasoning-aware representations. Extensive experiments on LH-VLN show that our approach achieves reasoning-aware yet real-time navigation, improving success rates and efficiency while reducing inference latency by an order of magnitude compared to explicit CoT methods.

Spatial-VLN: Zero-Shot Vision-and-Language Navigation With Explicit Spatial Perception and Exploration 2026-01-19
Show

Zero-shot Vision-and-Language Navigation (VLN) agents leveraging Large Language Models (LLMs) excel in generalization but suffer from insufficient spatial perception. Focusing on complex continuous environments, we categorize key perceptual bottlenecks into three spatial challenges: door interaction,multi-room navigation, and ambiguous instruction execution, where existing methods consistently suffer high failure rates. We present Spatial-VLN, a perception-guided exploration framework designed to overcome these challenges. The framework consists of two main modules. The Spatial Perception Enhancement (SPE) module integrates panoramic filtering with specialized door and region experts to produce spatially coherent, cross-view consistent perceptual representations. Building on this foundation, our Explored Multi-expert Reasoning (EMR) module uses parallel LLM experts to address waypoint-level semantics and region-level spatial transitions. When discrepancies arise between expert predictions, a query-and-explore mechanism is activated, prompting the agent to actively probe critical areas and resolve perceptual ambiguities. Experiments on VLN-CE demonstrate that Spatial VLN achieves state-of-the-art performance using only low-cost LLMs. Furthermore, to validate real-world applicability, we introduce a value-based waypoint sampling strategy that effectively bridges the Sim2Real gap. Extensive real-world evaluations confirm that our framework delivers superior generalization and robustness in complex environments. Our codes and videos are available at https://yueluhhxx.github.io/Spatial-VLN-web/.

GROKE: Vision-Free Navigation Instruction Evaluation via Graph Reasoning on OpenStreetMap 2026-01-12
Show

The evaluation of navigation instructions remains a persistent challenge in Vision-and-Language Navigation (VLN) research. Traditional reference-based metrics such as BLEU and ROUGE fail to capture the functional utility of spatial directives, specifically whether an instruction successfully guides a navigator to the intended destination. Although existing VLN agents could serve as evaluators, their reliance on high-fidelity visual simulators introduces licensing constraints and computational costs, and perception errors further confound linguistic quality assessment. This paper introduces GROKE(Graph-based Reasoning over OSM Knowledge for instruction Evaluation), a vision-free training-free hierarchical LLM-based framework for evaluating navigation instructions using OpenStreetMap data. Through systematic ablation studies, we demonstrate that structured JSON and textual formats for spatial information substantially outperform grid-based and visual graph representations. Our hierarchical architecture combines sub-instruction planning with topological graph navigation, reducing navigation error by 68.5% compared to heuristic and sampling baselines on the Map2Seq dataset. The agent's execution success, trajectory fidelity, and decision patterns serve as proxy metrics for functional navigability given OSM-visible landmarks and topology, establishing a scalable and interpretable evaluation paradigm without visual dependencies. Code and data are available at https://anonymous.4open.science/r/groke.

Under...

Under Review for ACL 2026

SpatialNav: Leveraging Spatial Scene Graphs for Zero-Shot Vision-and-Language Navigation 2026-01-11
Show

Although learning-based vision-and-language navigation (VLN) agents can learn spatial knowledge implicitly from large-scale training data, zero-shot VLN agents lack this process, relying primarily on local observations for navigation, which leads to inefficient exploration and a significant performance gap. To deal with the problem, we consider a zero-shot VLN setting that agents are allowed to fully explore the environment before task execution. Then, we construct the Spatial Scene Graph (SSG) to explicitly capture global spatial structure and semantics in the explored environment. Based on the SSG, we introduce SpatialNav, a zero-shot VLN agent that integrates an agent-centric spatial map, a compass-aligned visual representation, and a remote object localization strategy for efficient navigation. Comprehensive experiments in both discrete and continuous environments demonstrate that SpatialNav significantly outperforms existing zero-shot agents and clearly narrows the gap with state-of-the-art learning-based methods. Such results highlight the importance of global spatial representations for generalizable navigation.

11 pa...

11 pages, 4 figures, 6 tables

SeqWalker: Sequential-Horizon Vision-and-Language Navigation with Hierarchical Planning 2026-01-08
Show

Sequential-Horizon Vision-and-Language Navigation (SH-VLN) presents a challenging scenario where agents should sequentially execute multi-task navigation guided by complex, long-horizon language instructions. Current vision-and-language navigation models exhibit significant performance degradation with such multi-task instructions, as information overload impairs the agent's ability to attend to observationally relevant details. To address this problem, we propose SeqWalker, a navigation model built on a hierarchical planning framework. Our SeqWalker features: i) A High-Level Planner that dynamically selects global instructions into contextually relevant sub-instructions based on the agent's current visual observations, thus reducing cognitive load; ii) A Low-Level Planner incorporating an Exploration-Verification strategy that leverages the inherent logical structure of instructions for trajectory error correction. To evaluate SH-VLN performance, we also extend the IVLN dataset and establish a new benchmark. Extensive experiments are performed to demonstrate the superiority of the proposed SeqWalker.

AirNav: A Large-Scale Real-World UAV Vision-and-Language Navigation Dataset with Natural and Diverse Instructions 2026-01-07
Show

Existing Unmanned Aerial Vehicle (UAV) Vision-Language Navigation (VLN) datasets face issues such as dependence on virtual environments, lack of naturalness in instructions, and limited scale. To address these challenges, we propose AirNav, a large-scale UAV VLN benchmark constructed from real urban aerial data, rather than synthetic environments, with natural and diverse instructions. Additionally, we introduce the AirVLN-R1, which combines Supervised Fine-Tuning and Reinforcement Fine-Tuning to enhance performance and generalization. The feasibility of the model is preliminarily evaluated through real-world tests. Our dataset and code are publicly available.

VLN-MME: Diagnosing MLLMs as Language-guided Visual Navigation agents 2026-01-06
Show

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a wide range of vision-language tasks. However, their performance as embodied agents, which requires multi-round dialogue spatial reasoning and sequential action prediction, needs further exploration. Our work investigates this potential in the context of Vision-and-Language Navigation (VLN) by introducing a unified and extensible evaluation framework to probe MLLMs as zero-shot agents by bridging traditional navigation datasets into a standardized benchmark, named VLN-MME. We simplify the evaluation with a highly modular and accessible design. This flexibility streamlines experiments, enabling structured comparisons and component-level ablations across diverse MLLM architectures, agent designs, and navigation tasks. Crucially, enabled by our framework, we observe that enhancing our baseline agent with Chain-of-Thought (CoT) reasoning and self-reflection leads to an unexpected performance decrease. This suggests MLLMs exhibit poor context awareness in embodied navigation tasks; although they can follow instructions and structure their output, their 3D spatial reasoning fidelity is low. VLN-MME lays the groundwork for systematic evaluation of general-purpose MLLMs in embodied navigation settings and reveals limitations in their sequential decision-making capabilities. We believe these findings offer crucial guidance for MLLM post-training as embodied agents.

MDE-AgriVLN: Agricultural Vision-and-Language Navigation with Monocular Depth Estimation 2026-01-01
Show

Agricultural robots are serving as powerful assistants across a wide range of agricultural tasks, nevertheless, still heavily relying on manual operations or railway systems for movement. The AgriVLN method and the A2A benchmark pioneeringly extended Vision-and-Language Navigation (VLN) to the agricultural domain, enabling a robot to navigate to a target position following a natural language instruction. Unlike human binocular vision, most agricultural robots are only given a single camera for monocular vision, which results in limited spatial perception. To bridge this gap, we present the method of Agricultural Vision-and-Language Navigation with Monocular Depth Estimation (MDE-AgriVLN), in which we propose the MDE module generating depth features from RGB images, to assist the decision-maker on multimodal reasoning. When evaluated on the A2A benchmark, our MDE-AgriVLN method successfully increases Success Rate from 0.23 to 0.32 and decreases Navigation Error from 4.43m to 4.08m, demonstrating the state-of-the-art performance in the agricultural VLN domain. Code: https://github.com/AlexTraveling/MDE-AgriVLN.

LongFly: Long-Horizon UAV Vision-and-Language Navigation with Spatiotemporal Context Integration 2025-12-26
Show

Unmanned aerial vehicles (UAVs) are crucial tools for post-disaster search and rescue, facing challenges such as high information density, rapid changes in viewpoint, and dynamic structures, especially in long-horizon navigation. However, current UAV vision-and-language navigation(VLN) methods struggle to model long-horizon spatiotemporal context in complex environments, resulting in inaccurate semantic alignment and unstable path planning. To this end, we propose LongFly, a spatiotemporal context modeling framework for long-horizon UAV VLN. LongFly proposes a history-aware spatiotemporal modeling strategy that transforms fragmented and redundant historical data into structured, compact, and expressive representations. First, we propose the slot-based historical image compression module, which dynamically distills multi-view historical observations into fixed-length contextual representations. Then, the spatiotemporal trajectory encoding module is introduced to capture the temporal dynamics and spatial structure of UAV trajectories. Finally, to integrate existing spatiotemporal context with current observations, we design the prompt-guided multimodal integration module to support time-based reasoning and robust waypoint prediction. Experimental results demonstrate that LongFly outperforms state-of-the-art UAV VLN baselines by 7.89% in success rate and 6.33% in success weighted by path length, consistently across both seen and unseen environments.

Fine-Grained Instruction-Guided Graph Reasoning for Vision-and-Language Navigation 2025-12-23
Show

Vision-and-Language Navigation (VLN) requires an embodied agent to traverse complex environments by following natural language instructions, demanding accurate alignment between visual observations and linguistic guidance. Despite recent progress, existing methods typically encode visual and directional cues in a coupled manner, and process instructions without explicitly extracting navigation-critical semantics, which often leads to imprecise spatial reasoning and suboptimal cross-modal alignment. To address these challenges, we propose a fine-grained instruction-guided graph reasoning framework (OIKG) that enhances both spatial representation and instruction understanding during navigation. Specifically, an observation-graph interaction mechanism is introduced to disentangle angular and visual cues while strengthening directed edge representations through geometric embedding, enabling more reliable spatial reasoning within the navigation graph. In addition, a fine-grained instruction guidance module is designed to explicitly extract and leverage location-specific and object-centric information from language instructions, facilitating more precise cross-modal alignment between linguistic semantics and navigable trajectories. By jointly integrating structured graph reasoning with instruction-critical semantic cues, the proposed approach significantly improves the agent's ability to follow complex navigation instructions. Extensive experiments on the R2R and RxR benchmarks demonstrate that our method consistently achieves state-of-the-art performance across multiple evaluation metrics, validating the effectiveness of fine-grained instruction-guided graph reasoning for vision-and-language navigation.

10 pages, 4 figures
FreeAskWorld: An Interactive and Closed-Loop Simulator for Human-Centric Embodied AI 2025-12-20
Show

As embodied intelligence emerges as a core frontier in artificial intelligence research, simulation platforms must evolve beyond low-level physical interactions to capture complex, human-centered social behaviors. We introduce FreeAskWorld, an interactive simulation framework that integrates large language models (LLMs) for high-level behavior planning and semantically grounded interaction, informed by theories of intention and social cognition. Our framework supports scalable, realistic human-agent simulations and includes a modular data generation pipeline tailored for diverse embodied tasks. To validate the framework, we extend the classic Vision-and-Language Navigation (VLN) task into a interaction enriched Direction Inquiry setting, wherein agents can actively seek and interpret navigational guidance. We present and publicly release FreeAskWorld, a large-scale benchmark dataset comprising reconstructed environments, six diverse task types, 16 core object categories, 63,429 annotated sample frames, and more than 17 hours of interaction data to support training and evaluation of embodied AI systems. We benchmark VLN models, and human participants under both open-loop and closed-loop settings. Experimental results demonstrate that models fine-tuned on FreeAskWorld outperform their original counterparts, achieving enhanced semantic understanding and interaction competency. These findings underscore the efficacy of socially grounded simulation frameworks in advancing embodied AI systems toward sophisticated high-level planning and more naturalistic human-agent interaction. Importantly, our work underscores that interaction itself serves as an additional information modality.

9 pages, 4 figures
History-Enhanced Two-Stage Transformer for Aerial Vision-and-Language Navigation 2025-12-17
Show

Aerial Vision-and-Language Navigation (AVLN) requires Unmanned Aerial Vehicle (UAV) agents to localize targets in large-scale urban environments based on linguistic instructions. While successful navigation demands both global environmental reasoning and local scene comprehension, existing UAV agents typically adopt mono-granularity frameworks that struggle to balance these two aspects. To address this limitation, this work proposes a History-Enhanced Two-Stage Transformer (HETT) framework, which integrates the two aspects through a coarse-to-fine navigation pipeline. Specifically, HETT first predicts coarse-grained target positions by fusing spatial landmarks and historical context, then refines actions via fine-grained visual analysis. In addition, a historical grid map is designed to dynamically aggregate visual features into a structured spatial memory, enhancing comprehensive scene awareness. Additionally, the CityNav dataset annotations are manually refined to enhance data quality. Experiments on the refined CityNav dataset show that HETT delivers significant performance gains, while extensive ablation studies further verify the effectiveness of each component.

D3D-VLP: Dynamic 3D Vision-Language-Planning Model for Embodied Grounding and Navigation 2025-12-14
Show

Embodied agents face a critical dilemma that end-to-end models lack interpretability and explicit 3D reasoning, while modular systems ignore cross-component interdependencies and synergies. To bridge this gap, we propose the Dynamic 3D Vision-Language-Planning Model (D3D-VLP). Our model introduces two key innovations: 1) A Dynamic 3D Chain-of-Thought (3D CoT) that unifies planning, grounding, navigation, and question answering within a single 3D-VLM and CoT pipeline; 2) A Synergistic Learning from Fragmented Supervision (SLFS) strategy, which uses a masked autoregressive loss to learn from massive and partially-annotated hybrid data. This allows different CoT components to mutually reinforce and implicitly supervise each other. To this end, we construct a large-scale dataset with 10M hybrid samples from 5K real scans and 20K synthetic scenes that are compatible with online learning methods such as RL and DAgger. Our D3D-VLP achieves state-of-the-art results on multiple benchmarks, including Vision-and-Language Navigation (R2R-CE, REVERIE-CE, NavRAG-CE), Object-goal Navigation (HM3D-OVON), and Task-oriented Sequential Grounding and Navigation (SG3D). Real-world mobile manipulation experiments further validate the effectiveness.

Aerial Vision-Language Navigation with a Unified Framework for Spatial, Temporal and Embodied Reasoning 2025-12-09
Show

Aerial Vision-and-Language Navigation (VLN) aims to enable unmanned aerial vehicles (UAVs) to interpret natural language instructions and navigate complex urban environments using onboard visual observation. This task holds promise for real-world applications such as low-altitude inspection, search-and-rescue, and autonomous aerial delivery. Existing methods often rely on panoramic images, depth inputs, or odometry to support spatial reasoning and action planning. These requirements increase system cost and integration complexity, thus hindering practical deployment for lightweight UAVs. We present a unified aerial VLN framework that operates solely on egocentric monocular RGB observations and natural language instructions. The model formulates navigation as a next-token prediction problem, jointly optimizing spatial perception, trajectory reasoning, and action prediction through prompt-guided multi-task learning. Moreover, we propose a keyframe selection strategy to reduce visual redundancy by retaining semantically informative frames, along with an action merging and label reweighting mechanism that mitigates long-tailed supervision imbalance and facilitates stable multi-task co-training. Extensive experiments on the Aerial VLN benchmark validate the effectiveness of our method. Under the challenging monocular RGB-only setting, our model achieves strong results across both seen and unseen environments. It significantly outperforms existing RGB-only baselines and narrows the performance gap with state-of-the-art panoramic RGB-D counterparts. Comprehensive ablation studies further demonstrate the contribution of our task design and architectural choices.

Under...

Under Review, 12 pages, 9 figures

Ground Slow, Move Fast: A Dual-System Foundation Model for Generalizable Vision-and-Language Navigation 2025-12-09
Show

While recent large vision-language models (VLMs) have improved generalization in vision-language navigation (VLN), existing methods typically rely on end-to-end pipelines that map vision-language inputs directly to short-horizon discrete actions. Such designs often produce fragmented motions, incur high latency, and struggle with real-world challenges like dynamic obstacle avoidance. We propose DualVLN, the first dual-system VLN foundation model that synergistically integrates high-level reasoning with low-level action execution. System 2, a VLM-based global planner, "grounds slowly" by predicting mid-term waypoint goals via image-grounded reasoning. System 1, a lightweight, multi-modal conditioning Diffusion Transformer policy, "moves fast" by leveraging both explicit pixel goals and latent features from System 2 to generate smooth and accurate trajectories. The dual-system design enables robust real-time control and adaptive local decision-making in complex, dynamic environments. By decoupling training, the VLM retains its generalization, while System 1 achieves interpretable and effective local navigation. DualVLN outperforms prior methods across all VLN benchmarks and real-world experiments demonstrate robust long-horizon planning and real-time adaptability in dynamic environments.

ST-Booster: An Iterative SpatioTemporal Perception Booster for Vision-and-Language Navigation in Continuous Environments 2025-12-02
Show

Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to navigate unknown, continuous spaces based on natural language instructions. Compared to discrete settings, VLN-CE poses two core perception challenges. First, the absence of predefined observation points leads to heterogeneous visual memories and weakened global spatial correlations. Second, cumulative reconstruction errors in three-dimensional scenes introduce structural noise, impairing local feature perception. To address these challenges, this paper proposes ST-Booster, an iterative spatiotemporal booster that enhances navigation performance through multi-granularity perception and instruction-aware reasoning. ST-Booster consists of three key modules -- Hierarchical SpatioTemporal Encoding (HSTE), Multi-Granularity Aligned Fusion (MGAF), and ValueGuided Waypoint Generation (VGWG). HSTE encodes long-term global memory using topological graphs and captures shortterm local details via grid maps. MGAF aligns these dualmap representations with instructions through geometry-aware knowledge fusion. The resulting representations are iteratively refined through pretraining tasks. During reasoning, VGWG generates Guided Attention Heatmaps (GAHs) to explicitly model environment-instruction relevance and optimize waypoint selection. Extensive comparative experiments and performance analyses are conducted, demonstrating that ST-Booster outperforms existing state-of-the-art methods, particularly in complex, disturbance-prone environments.

11 pages, 7 figures
UNeMo: Collaborative Visual-Language Reasoning and Navigation via a Multimodal World Model 2025-11-24
Show

Vision-and-Language Navigation (VLN) requires agents to autonomously navigate complex environments via visual images and natural language instruction--remains highly challenging. Recent research on enhancing language-guided navigation reasoning using pre-trained large language models (LLMs) has shown promising prospects. However, the reasoning of such methods is limited to the linguistic modality, lacking visual reasoning capabilities. Moreover, existing reasoning modules are optimized separately from navigation policies, leading to incompatibility and potential conflicts in optimization objectives. To tackle these challenges, we introduce UNeMo, a novel framework designed for the collaborative optimization of visual state reasoning and navigational decision-making. It introduces a Multimodal World Model (MWM) that takes visual features, language instructions, and navigational actions as inputs to jointly predict subsequent visual states, enabling cross-modal reasoning. Via a Hierarchical Prediction-Feedback (HPN) mechanism, MWM collaborates with navigation policies: the first layer generates actions using current vision-and-language features; MWM then infers post-action visual states to guide the second layer's fine-grained decisions. This forms a dynamic bidirectional promotion mechanism where MWM reasoning optimizes navigation policies, while policy decisions feedback to improve MWM's reasoning accuracy. Experiments on R2R and REVERIE datasets show UNeMo outperforms state-of-the-art methods by 2.1% and 0.7% in navigation accuracy for unseen scenes, validating its effectiveness.

Run, Ruminate, and Regulate: A Dual-process Thinking System for Vision-and-Language Navigation 2025-11-18
Show

Vision-and-Language Navigation (VLN) requires an agent to dynamically explore complex 3D environments following human instructions. Recent research underscores the potential of harnessing large language models (LLMs) for VLN, given their commonsense knowledge and general reasoning capabilities. Despite their strengths, a substantial gap in task completion performance persists between LLM-based approaches and domain experts, as LLMs inherently struggle to comprehend real-world spatial correlations precisely. Additionally, introducing LLMs is accompanied with substantial computational cost and inference latency. To address these issues, we propose a novel dual-process thinking framework dubbed R3, integrating LLMs' generalization capabilities with VLN-specific expertise in a zero-shot manner. The framework comprises three core modules: Runner, Ruminator, and Regulator. The Runner is a lightweight transformer-based expert model that ensures efficient and accurate navigation under regular circumstances. The Ruminator employs a powerful multimodal LLM as the backbone and adopts chain-of-thought (CoT) prompting to elicit structured reasoning. The Regulator monitors the navigation progress and controls the appropriate thinking mode according to three criteria, integrating Runner and Ruminator harmoniously. Experimental results illustrate that R3 significantly outperforms other state-of-the-art methods, exceeding 3.28% and 3.30% in SPL and RGSPL respectively on the REVERIE benchmark. This pronounced enhancement highlights the effectiveness of our method in handling challenging VLN tasks.

Shedding Light on VLN Robustness: A Black-box Framework for Indoor Lighting-based Adversarial Attack 2025-11-17
Show

Vision-and-Language Navigation (VLN) agents have made remarkable progress, but their robustness remains insufficiently studied. Existing adversarial evaluations often rely on perturbations that manifest as unusual textures rarely encountered in everyday indoor environments. Errors under such contrived conditions have limited practical relevance, as real-world agents are unlikely to encounter such artificial patterns. In this work, we focus on indoor lighting, an intrinsic yet largely overlooked scene attribute that strongly influences navigation. We propose Indoor Lighting-based Adversarial Attack (ILA), a black-box framework that manipulates global illumination to disrupt VLN agents. Motivated by typical household lighting usage, we design two attack modes: Static Indoor Lighting-based Attack (SILA), where the lighting intensity remains constant throughout an episode, and Dynamic Indoor Lighting-based Attack (DILA), where lights are switched on or off at critical moments to induce abrupt illumination changes. We evaluate ILA on two state-of-the-art VLN models across three navigation tasks. Results show that ILA significantly increases failure rates while reducing trajectory efficiency, revealing previously unrecognized vulnerabilities of VLN agents to realistic indoor lighting variations.

VISTAv2: World Imagination for Indoor Vision-and-Language Navigation 2025-11-14
Show

Vision-and-Language Navigation (VLN) requires agents to follow language instructions while acting in continuous real-world spaces. Prior image imagination based VLN work shows benefits for discrete panoramas but lacks online, action-conditioned predictions and does not produce explicit planning values; moreover, many methods replace the planner with long-horizon objectives that are brittle and slow. To bridge this gap, we propose VISTAv2, a generative world model that rolls out egocentric future views conditioned on past observations, candidate action sequences, and instructions, and projects them into an online value map for planning. Unlike prior approaches, VISTAv2 does not replace the planner. The online value map is fused at score level with the base objective, providing reachability and risk-aware guidance. Concretely, we employ an action-aware Conditional Diffusion Transformer video predictor to synthesize short-horizon futures, align them with the natural language instruction via a vision-language scorer, and fuse multiple rollouts in a differentiable imagination-to-value head to output an imagined egocentric value map. For efficiency, rollouts occur in VAE latent space with a distilled sampler and sparse decoding, enabling inference on a single consumer GPU. Evaluated on MP3D and RoboTHOR, VISTAv2 improves over strong baselines, and ablations show that action-conditioned imagination, instruction-guided value fusion, and the online value-map planner are all critical, suggesting that VISTAv2 offers a practical and interpretable route to robust VLN.

11 pages, 5 figures
Agent Journey Beyond RGB: Hierarchical Semantic-Spatial Representation Enrichment for Vision-and-Language Navigation 2025-11-13
Show

Navigating unseen environments from natural language instructions remains challenging for egocentric agents in Vision-and-Language Navigation (VLN). Humans naturally ground concrete semantic knowledge within spatial layouts during indoor navigation. Although prior work has introduced diverse environment representations to improve reasoning, auxiliary modalities are often naively concatenated with RGB features, which underutilizes each modality's distinct contribution. We propose a hierarchical Semantic Understanding and Spatial Awareness (SUSA) architecture to enable agents to perceive and ground environments at multiple scales. Specifically, the Textual Semantic Understanding (TSU) module supports local action prediction by generating view-level descriptions, capturing fine-grained semantics and narrowing the modality gap between instructions and environments. Complementarily, the Depth Enhanced Spatial Perception (DSP) module incrementally builds a trajectory-level depth exploration map, providing a coarse-grained representation of global spatial layout. Extensive experiments show that the hierarchical representation enrichment of SUSA significantly improves navigation performance over the baseline on discrete VLN benchmarks (REVERIE, R2R, and SOON) and generalizes better to the continuous R2R-CE benchmark.

AAAI2...

AAAI2026, I14 pages, 12 figures, 11 tables

A Survey on Improving Human Robot Collaboration through Vision-and-Language Navigation 2025-11-06
Show

Vision-and-Language Navigation (VLN) is a multi-modal, cooperative task requiring agents to interpret human instructions, navigate 3D environments, and communicate effectively under ambiguity. This paper presents a comprehensive review of recent VLN advancements in robotics and outlines promising directions to improve multi-robot coordination. Despite progress, current models struggle with bidirectional communication, ambiguity resolution, and collaborative decision-making in the multi-agent systems. We review approximately 200 relevant articles to provide an in-depth understanding of the current landscape. Through this survey, we aim to provide a thorough resource that inspires further research at the intersection of VLN and robotics. We advocate that the future VLN systems should support proactive clarification, real-time feedback, and contextual reasoning through advanced natural language understanding (NLU) techniques. Additionally, decentralized decision-making frameworks with dynamic role assignment are essential for scalable, efficient multi-robot collaboration. These innovations can significantly enhance human-robot interaction (HRI) and enable real-world deployment in domains such as healthcare, logistics, and disaster response.

Fast-SmartWay: Panoramic-Free End-to-End Zero-Shot Vision-and-Language Navigation 2025-11-02
Show

Recent advances in Vision-and-Language Navigation in Continuous Environments (VLN-CE) have leveraged multimodal large language models (MLLMs) to achieve zero-shot navigation. However, existing methods often rely on panoramic observations and two-stage pipelines involving waypoint predictors, which introduce significant latency and limit real-world applicability. In this work, we propose Fast-SmartWay, an end-to-end zero-shot VLN-CE framework that eliminates the need for panoramic views and waypoint predictors. Our approach uses only three frontal RGB-D images combined with natural language instructions, enabling MLLMs to directly predict actions. To enhance decision robustness, we introduce an Uncertainty-Aware Reasoning module that integrates (i) a Disambiguation Module for avoiding local optima, and (ii) a Future-Past Bidirectional Reasoning mechanism for globally coherent planning. Experiments on both simulated and real-robot environments demonstrate that our method significantly reduces per-step latency while achieving competitive or superior performance compared to panoramic-view baselines. These results demonstrate the practicality and effectiveness of Fast-SmartWay for real-world zero-shot embodied navigation.

Continual Vision-and-Language Navigation 2025-10-31
Show

Developing Vision-and-Language Navigation (VLN) agents typically assumes a \textit{train-once-deploy-once} strategy, which is unrealistic as deployed agents continually encounter novel environments. To address this, we propose the Continual Vision-and-Language Navigation (CVLN) paradigm, where agents learn and adapt incrementally across multiple \textit{scene domains}. CVLN includes two setups: Initial-instruction based CVLN for instruction-following, and Dialogue-based CVLN for dialogue-guided navigation. We also introduce two simple yet effective baselines for sequential decision-making: Perplexity Replay (PerpR), which replays difficult episodes, and Episodic Self-Replay (ESR), which stores and revisits action logits during training. Experiments show that existing continual learning methods fall short for CVLN, while PerpR and ESR achieve better performance by efficiently utilizing replay memory.

STRIDER: Navigation via Instruction-Aligned Structural Decision Space Optimization 2025-10-27
Show

The Zero-shot Vision-and-Language Navigation in Continuous Environments (VLN-CE) task requires agents to navigate previously unseen 3D environments using natural language instructions, without any scene-specific training. A critical challenge in this setting lies in ensuring agents' actions align with both spatial structure and task intent over long-horizon execution. Existing methods often fail to achieve robust navigation due to a lack of structured decision-making and insufficient integration of feedback from previous actions. To address these challenges, we propose STRIDER (Instruction-Aligned Structural Decision Space Optimization), a novel framework that systematically optimizes the agent's decision space by integrating spatial layout priors and dynamic task feedback. Our approach introduces two key innovations: 1) a Structured Waypoint Generator that constrains the action space through spatial structure, and 2) a Task-Alignment Regulator that adjusts behavior based on task progress, ensuring semantic alignment throughout navigation. Extensive experiments on the R2R-CE and RxR-CE benchmarks demonstrate that STRIDER significantly outperforms strong SOTA across key metrics; in particular, it improves Success Rate (SR) from 29% to 35%, a relative gain of 20.7%. Such results highlight the importance of spatially constrained decision-making and feedback-guided execution in improving navigation fidelity for zero-shot VLN-CE.

LaViRA: Language-Vision-Robot Actions Translation for Zero-Shot Vision Language Navigation in Continuous Environments 2025-10-22
Show

Zero-shot Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires an agent to navigate unseen environments based on natural language instructions without any prior training. Current methods face a critical trade-off: either rely on environment-specific waypoint predictors that limit scene generalization, or underutilize the reasoning capabilities of large models during navigation. We introduce LaViRA, a simple yet effective zero-shot framework that addresses this dilemma by decomposing action into a coarse-to-fine hierarchy: Language Action for high-level planning, Vision Action for perceptual grounding, and Robot Action for robust navigation. This modular decomposition allows us to leverage the distinct strengths of different scales of Multimodal Large Language Models (MLLMs) at each stage, creating a system that is powerful in its reasoning, grounding and practical control. LaViRA significantly outperforms existing state-of-the-art methods on the VLN-CE benchmark, demonstrating superior generalization capabilities in unseen environments, while maintaining transparency and efficiency for real-world deployment.

NavQ: Learning a Q-Model for Foresighted Vision-and-Language Navigation 2025-10-18
Show

In this work we concentrate on the task of goal-oriented Vision-and-Language Navigation (VLN). Existing methods often make decisions based on historical information, overlooking the future implications and long-term outcomes of the actions. In contrast, we aim to develop a foresighted agent. Specifically, we draw upon Q-learning to train a Q-model using large-scale unlabeled trajectory data, in order to learn the general knowledge regarding the layout and object relations within indoor scenes. This model can generate a Q-feature, analogous to the Q-value in traditional Q-network, for each candidate action, which describes the potential future information that may be observed after taking the specific action. Subsequently, a cross-modal future encoder integrates the task-agnostic Q-feature with navigation instructions to produce a set of action scores reflecting future prospects. These scores, when combined with the original scores based on history, facilitate an A*-style searching strategy to effectively explore the regions that are more likely to lead to the destination. Extensive experiments conducted on widely used goal-oriented VLN datasets validate the effectiveness of the proposed method.

ICCV 2025
SUM-AgriVLN: Spatial Understanding Memory for Agricultural Vision-and-Language Navigation 2025-10-16
Show

Agricultural robots are emerging as powerful assistants across a wide range of agricultural tasks, nevertheless, still heavily rely on manual operation or fixed rail systems for movement. The AgriVLN method and the A2A benchmark pioneeringly extend Vision-and-Language Navigation (VLN) to the agricultural domain, enabling robots to navigate to the target positions following the natural language instructions. In practical agricultural scenarios, navigation instructions often repeatedly occur, yet AgriVLN treat each instruction as an independent episode, overlooking the potential of past experiences to provide spatial context for subsequent ones. To bridge this gap, we propose the method of Spatial Understanding Memory for Agricultural Vision-and-Language Navigation (SUM-AgriVLN), in which the SUM module employs spatial understanding and save spatial memory through 3D reconstruction and representation. When evaluated on the A2A benchmark, our SUM-AgriVLN effectively improves Success Rate from 0.47 to 0.54 with slight sacrifice on Navigation Error from 2.91m to 2.93m, demonstrating the state-of-the-art performance in the agricultural domain. Code: https://github.com/AlexTraveling/SUM-AgriVLN.

Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System 2025-10-10
Show

Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce \textbf{Mem4Nav}, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.

The p...

The paper is currently under investigation regarding concerns of potential academic misconduct. While the investigation is ongoing, the authors have voluntarily requested to withdraw the manuscript

HA-VLN 2.0: An Open Benchmark and Leaderboard for Human-Aware Navigation in Discrete and Continuous Environments with Dynamic Multi-Human Interactions 2025-10-09
Show

Vision-and-Language Navigation (VLN) has been studied mainly in either discrete or continuous settings, with little attention to dynamic, crowded environments. We present HA-VLN 2.0, a unified benchmark introducing explicit social-awareness constraints. Our contributions are: (i) a standardized task and metrics capturing both goal accuracy and personal-space adherence; (ii) HAPS 2.0 dataset and simulators modeling multi-human interactions, outdoor contexts, and finer language-motion alignment; (iii) benchmarks on 16,844 socially grounded instructions, revealing sharp performance drops of leading agents under human dynamics and partial observability; and (iv) real-world robot experiments validating sim-to-real transfer, with an open leaderboard enabling transparent comparison. Results show that explicit social modeling improves navigation robustness and reduces collisions, underscoring the necessity of human-centric approaches. By releasing datasets, simulators, baselines, and protocols, HA-VLN 2.0 provides a strong foundation for safe, socially responsible navigation research.

33 pa...

33 pages, 20 figures, website: https://ha-vln-project.vercel.app/

Dream to Recall: Imagination-Guided Experience Retrieval for Memory-Persistent Vision-and-Language Navigation 2025-10-09
Show

Vision-and-Language Navigation (VLN) requires agents to follow natural language instructions through environments, with memory-persistent variants demanding progressive improvement through accumulated experience. Existing approaches for memory-persistent VLN face critical limitations: they lack effective memory access mechanisms, instead relying on entire memory incorporation or fixed-horizon lookup, and predominantly store only environmental observations while neglecting navigation behavioral patterns that encode valuable decision-making strategies. We present Memoir, which employs imagination as a retrieval mechanism grounded by explicit memory: a world model imagines future navigation states as queries to selectively retrieve relevant environmental observations and behavioral histories. The approach comprises: 1) a language-conditioned world model that imagines future states serving dual purposes: encoding experiences for storage and generating retrieval queries; 2) Hybrid Viewpoint-Level Memory that anchors both observations and behavioral patterns to viewpoints, enabling hybrid retrieval; and 3) an experience-augmented navigation model that integrates retrieved knowledge through specialized encoders. Extensive evaluation across diverse memory-persistent VLN benchmarks with 10 distinctive testing scenarios demonstrates Memoir's effectiveness: significant improvements across all scenarios, with 5.4% SPL gains on IR2R over the best memory-persistent baseline, accompanied by 8.3x training speedup and 74% inference memory reduction. The results validate that predictive retrieval of both environmental and behavioral memories enables more effective navigation, with analysis indicating substantial headroom (73.3% vs 93.4% upper bound) for this imagination-guided paradigm. Code at https://github.com/xyz9911/Memoir.

14 pa...

14 pages, 6 figures, 13 tables

Breaking Down and Building Up: Mixture of Skill-Based Vision-and-Language Navigation Agents 2025-10-01
Show

Vision-and-Language Navigation (VLN) poses significant challenges for agents to interpret natural language instructions and navigate complex 3D environments. While recent progress has been driven by large-scale pre-training and data augmentation, current methods still struggle to generalize to unseen scenarios, particularly when complex spatial and temporal reasoning is required. In this work, we propose SkillNav, a modular framework that introduces structured, skill-based reasoning into Transformer-based VLN agents. Our method decomposes navigation into a set of interpretable atomic skills (e.g., Vertical Movement, Area and Region Identification, Stop and Pause), each handled by a specialized agent. To support targeted skill training without manual data annotation, we construct a synthetic dataset pipeline that generates diverse, linguistically natural, skill-specific instruction-trajectory pairs. We then introduce a novel training-free Vision-Language Model (VLM)-based router, which dynamically selects the most suitable agent at each time step by aligning sub-goals with visual observations and historical actions. SkillNav obtains competitive results on commonly used benchmarks and establishes state-of-the-art generalization to the GSA-R2R, a benchmark with novel instruction styles and unseen environments.

Landmark-Guided Knowledge for Vision-and-Language Navigation 2025-09-30
Show

Vision-and-language navigation is one of the core tasks in embodied intelligence, requiring an agent to autonomously navigate in an unfamiliar environment based on natural language instructions. However, existing methods often fail to match instructions with environmental information in complex scenarios, one reason being the lack of common-sense reasoning ability. This paper proposes a vision-and-language navigation method called Landmark-Guided Knowledge (LGK), which introduces an external knowledge base to assist navigation, addressing the misjudgment issues caused by insufficient common sense in traditional methods. Specifically, we first construct a knowledge base containing 630,000 language descriptions and use knowledge Matching to align environmental subviews with the knowledge base, extracting relevant descriptive knowledge. Next, we design a Knowledge-Guided by Landmark (KGL) mechanism, which guides the agent to focus on the most relevant parts of the knowledge by leveraging landmark information in the instructions, thereby reducing the data bias that may arise from incorporating external knowledge. Finally, we propose Knowledge-Guided Dynamic Augmentation (KGDA), which effectively integrates language, knowledge, vision, and historical information. Experimental results demonstrate that the LGK method outperforms existing state-of-the-art methods on the R2R and REVERIE vision-and-language navigation datasets, particularly in terms of navigation error, success rate, and path efficiency.

Accep...

Accepted for publication by International Conference on Intelligent Computing 2025

Vision-and-Language Navigation with Analogical Textual Descriptions in LLMs 2025-09-29
Show

Integrating large language models (LLMs) into embodied AI models is becoming increasingly prevalent. However, existing zero-shot LLM-based Vision-and-Language Navigation (VLN) agents either encode images as textual scene descriptions, potentially oversimplifying visual details, or process raw image inputs, which can fail to capture abstract semantics required for high-level reasoning. In this paper, we improve the navigation agent's contextual understanding by incorporating textual descriptions from multiple perspectives that facilitate analogical reasoning across images. By leveraging text-based analogical reasoning, the agent enhances its global scene understanding and spatial reasoning, leading to more accurate action decisions. We evaluate our approach on the R2R dataset, where our experiments demonstrate significant improvements in navigation performance.

See, Point, Fly: A Learning-Free VLM Framework for Universal Unmanned Aerial Navigation 2025-09-26
Show

We present See, Point, Fly (SPF), a training-free aerial vision-and-language navigation (AVLN) framework built atop vision-language models (VLMs). SPF is capable of navigating to any goal based on any type of free-form instructions in any kind of environment. In contrast to existing VLM-based approaches that treat action prediction as a text generation task, our key insight is to consider action prediction for AVLN as a 2D spatial grounding task. SPF harnesses VLMs to decompose vague language instructions into iterative annotation of 2D waypoints on the input image. Along with the predicted traveling distance, SPF transforms predicted 2D waypoints into 3D displacement vectors as action commands for UAVs. Moreover, SPF also adaptively adjusts the traveling distance to facilitate more efficient navigation. Notably, SPF performs navigation in a closed-loop control manner, enabling UAVs to follow dynamic targets in dynamic environments. SPF sets a new state of the art in DRL simulation benchmark, outperforming the previous best method by an absolute margin of 63%. In extensive real-world evaluations, SPF outperforms strong baselines by a large margin. We also conduct comprehensive ablation studies to highlight the effectiveness of our design choice. Lastly, SPF shows remarkable generalization to different VLMs. Project page: https://spf-web.pages.dev

CoRL ...

CoRL 2025. Project page: https://spf-web.pages.dev

JanusVLN: Decoupling Semantics and Spatiality with Dual Implicit Memory for Vision-Language Navigation 2025-09-26
Show

Vision-and-Language Navigation requires an embodied agent to navigate through unseen environments, guided by natural language instructions and a continuous video stream. Recent advances in VLN have been driven by the powerful semantic understanding of Multimodal Large Language Models. However, these methods typically rely on explicit semantic memory, such as building textual cognitive maps or storing historical visual frames. This type of method suffers from spatial information loss, computational redundancy, and memory bloat, which impede efficient navigation. Inspired by the implicit scene representation in human navigation, analogous to the left brain's semantic understanding and the right brain's spatial cognition, we propose JanusVLN, a novel VLN framework featuring a dual implicit neural memory that models spatial-geometric and visual-semantic memory as separate, compact, and fixed-size neural representations. This framework first extends the MLLM to incorporate 3D prior knowledge from the spatial-geometric encoder, thereby enhancing the spatial reasoning capabilities of models based solely on RGB input. Then, the historical key-value caches from the spatial-geometric and visual-semantic encoders are constructed into a dual implicit memory. By retaining only the KVs of tokens in the initial and sliding window, redundant computation is avoided, enabling efficient incremental updates. Extensive experiments demonstrate that JanusVLN outperforms over 20 recent methods to achieve SOTA performance. For example, the success rate improves by 10.5-35.5 compared to methods using multiple data types as input and by 3.6-10.8 compared to methods using more RGB training data. This indicates that the proposed dual implicit neural memory, as a novel paradigm, explores promising new directions for future VLN research. Ours project page: https://miv-xjtu.github.io/JanusVLN.github.io/.

Proje...

Project page: https://miv-xjtu.github.io/JanusVLN.github.io/

Rethinking the Embodied Gap in Vision-and-Language Navigation: A Holistic Study of Physical and Visual Disparities 2025-09-26
Show

Recent Vision-and-Language Navigation (VLN) advancements are promising, but their idealized assumptions about robot movement and control fail to reflect physically embodied deployment challenges. To bridge this gap, we introduce VLN-PE, a physically realistic VLN platform supporting humanoid, quadruped, and wheeled robots. For the first time, we systematically evaluate several ego-centric VLN methods in physical robotic settings across different technical pipelines, including classification models for single-step discrete action prediction, a diffusion model for dense waypoint prediction, and a train-free, map-based large language model (LLM) integrated with path planning. Our results reveal significant performance degradation due to limited robot observation space, environmental lighting variations, and physical challenges like collisions and falls. This also exposes locomotion constraints for legged robots in complex environments. VLN-PE is highly extensible, allowing seamless integration of new scenes beyond MP3D, thereby enabling more comprehensive VLN evaluation. Despite the weak generalization of current models in physical deployment, VLN-PE provides a new pathway for improving cross-embodiment's overall adaptability. We hope our findings and tools inspire the community to rethink VLN limitations and advance robust, practical VLN models. The code is available at https://crystalsixone.github.io/vln_pe.github.io/.

Accep...

Accepted by ICCV 2025

Walk and Read Less: Improving the Efficiency of Vision-and-Language Navigation via Tuning-Free Multimodal Token Pruning 2025-09-22
Show

Large models achieve strong performance on Vision-and-Language Navigation (VLN) tasks, but are costly to run in resource-limited environments. Token pruning offers appealing tradeoffs for efficiency with minimal performance loss by reducing model input size, but prior work overlooks VLN-specific challenges. For example, information loss from pruning can effectively increase computational cost due to longer walks. Thus, the inability to identify uninformative tokens undermines the supposed efficiency gains from pruning. To address this, we propose Navigation-Aware Pruning (NAP), which uses navigation-specific traits to simplify the pruning process by pre-filtering tokens into foreground and background. For example, image views are filtered based on whether the agent can navigate in that direction. We also extract navigation-relevant instructions using a Large Language Model. After filtering, we focus pruning on background tokens, minimizing information loss. To further help avoid increases in navigation length, we discourage backtracking by removing low-importance navigation nodes. Experiments on standard VLN benchmarks show NAP significantly outperforms prior work, preserving higher success rates while saving more than 50% FLOPS.

Accep...

Accepted to EMNLP 2025. Data and code to be released at https://github.com/wdqin/VLN-NAP

T-araVLN: Translator for Agricultural Robotic Agents on Vision-and-Language Navigation 2025-09-18
Show

Agricultural robotic agents have been becoming powerful helpers in a wide range of agricultural tasks, however, still heavily rely on manual operation or fixed railways for movement. To address this limitation, the AgriVLN method and the A2A benchmark pioneeringly extend Vision-and-Language Navigation (VLN) to the agricultural domain, enabling agents to navigate to the target positions following the natural language instructions. AgriVLN effectively understands the simple instructions, but often misunderstands the complex ones. To bridge this gap, we propose the method of Translator for Agricultural Robotic Agents on Vision-and-Language Navigation (T-araVLN), in which the Instruction Translator module translates the original instruction to be more refined and precise. When evaluated on the A2A benchmark, our T-araVLN effectively improves Success Rate from 0.47 to 0.63 and reduces Navigation Error from 2.91m to 2.28m, demonstrating the state-of-the-art performance in the agricultural domain. Code: https://github.com/AlexTraveling/T-araVLN.

Embodied Navigation Foundation Model 2025-09-16
Show

Navigation is a fundamental capability in embodied AI, representing the intelligence required to perceive and interact within physical environments following language instructions. Despite significant progress in large Vision-Language Models (VLMs), which exhibit remarkable zero-shot performance on general vision-language tasks, their generalization ability in embodied navigation remains largely confined to narrow task settings and embodiment-specific architectures. In this work, we introduce a cross-embodiment and cross-task Navigation Foundation Model (NavFoM), trained on eight million navigation samples that encompass quadrupeds, drones, wheeled robots, and vehicles, and spanning diverse tasks such as vision-and-language navigation, object searching, target tracking, and autonomous driving. NavFoM employs a unified architecture that processes multimodal navigation inputs from varying camera configurations and navigation horizons. To accommodate diverse camera setups and temporal horizons, NavFoM incorporates identifier tokens that embed camera view information of embodiments and the temporal context of tasks. Furthermore, to meet the demands of real-world deployment, NavFoM controls all observation tokens using a dynamically adjusted sampling strategy under a limited token length budget. Extensive evaluations on public benchmarks demonstrate that our model achieves state-of-the-art or highly competitive performance across multiple navigation tasks and embodiments without requiring task-specific fine-tuning. Additional real-world experiments further confirm the strong generalization capability and practical applicability of our approach.

Proje...

Project Page: https://pku-epic.github.io/NavFoM-Web/

ActiveVLN: Towards Active Exploration via Multi-Turn RL in Vision-and-Language Navigation 2025-09-16
Show

The Vision-and-Language Navigation (VLN) task requires an agent to follow natural language instructions and navigate through complex environments. Existing MLLM-based VLN methods primarily rely on imitation learning (IL) and often use DAgger for post-training to mitigate covariate shift. While effective, these approaches incur substantial data collection and training costs. Reinforcement learning (RL) offers a promising alternative. However, prior VLN RL methods lack dynamic interaction with the environment and depend on expert trajectories for reward shaping, rather than engaging in open-ended active exploration. This restricts the agent's ability to discover diverse and plausible navigation routes. To address these limitations, we propose ActiveVLN, a VLN framework that explicitly enables active exploration through multi-turn RL. In the first stage, a small fraction of expert trajectories is used for IL to bootstrap the agent. In the second stage, the agent iteratively predicts and executes actions, automatically collects diverse trajectories, and optimizes multiple rollouts via the GRPO objective. To further improve RL efficiency, we introduce a dynamic early-stopping strategy to prune long-tail or likely failed trajectories, along with additional engineering optimizations. Experiments show that ActiveVLN achieves the largest performance gains over IL baselines compared to both DAgger-based and prior RL-based post-training methods, while reaching competitive performance with state-of-the-art approaches despite using a smaller model. Code and data will be released soon.

DreamNav: A Trajectory-Based Imaginative Framework for Zero-Shot Vision-and-Language Navigation 2025-09-14
Show

Vision-and-Language Navigation in Continuous Environments (VLN-CE), which links language instructions to perception and control in the real world, is a core capability of embodied robots. Recently, large-scale pretrained foundation models have been leveraged as shared priors for perception, reasoning, and action, enabling zero-shot VLN without task-specific training. However, existing zero-shot VLN methods depend on costly perception and passive scene understanding, collapsing control to point-level choices. As a result, they are expensive to deploy, misaligned in action semantics, and short-sighted in planning. To address these issues, we present DreamNav that focuses on the following three aspects: (1) for reducing sensory cost, our EgoView Corrector aligns viewpoints and stabilizes egocentric perception; (2) instead of point-level actions, our Trajectory Predictor favors global trajectory-level planning to better align with instruction semantics; and (3) to enable anticipatory and long-horizon planning, we propose an Imagination Predictor to endow the agent with proactive thinking capability. On VLN-CE and real-world tests, DreamNav sets a new zero-shot state-of-the-art (SOTA), outperforming the strongest egocentric baseline with extra information by up to 7.49% and 18.15% in terms of SR and SPL metrics. To our knowledge, this is the first zero-shot VLN method to unify trajectory-level planning and active imagination while using only egocentric inputs.

GC-VLN: Instruction as Graph Constraints for Training-free Vision-and-Language Navigation 2025-09-12
Show

In this paper, we propose a training-free framework for vision-and-language navigation (VLN). Existing zero-shot VLN methods are mainly designed for discrete environments or involve unsupervised training in continuous simulator environments, which makes it challenging to generalize and deploy them in real-world scenarios. To achieve a training-free framework in continuous environments, our framework formulates navigation guidance as graph constraint optimization by decomposing instructions into explicit spatial constraints. The constraint-driven paradigm decodes spatial semantics through constraint solving, enabling zero-shot adaptation to unseen environments. Specifically, we construct a spatial constraint library covering all types of spatial relationship mentioned in VLN instructions. The human instruction is decomposed into a directed acyclic graph, with waypoint nodes, object nodes and edges, which are used as queries to retrieve the library to build the graph constraints. The graph constraint optimization is solved by the constraint solver to determine the positions of waypoints, obtaining the robot's navigation path and final goal. To handle cases of no solution or multiple solutions, we construct a navigation tree and the backtracking mechanism. Extensive experiments on standard benchmarks demonstrate significant improvements in success rate and navigation efficiency compared to state-of-the-art zero-shot VLN methods. We further conduct real-world experiments to show that our framework can effectively generalize to new environments and instruction sets, paving the way for a more robust and autonomous navigation framework.

Accep...

Accepted to CoRL 2025. Project page: this https URL

MSNav: Zero-Shot Vision-and-Language Navigation with Dynamic Memory and LLM Spatial Reasoning 2025-09-10
Show

Vision-and-Language Navigation (VLN) requires an agent to interpret natural language instructions and navigate complex environments. Current approaches often adopt a "black-box" paradigm, where a single Large Language Model (LLM) makes end-to-end decisions. However, it is plagued by critical vulnerabilities, including poor spatial reasoning, weak cross-modal grounding, and memory overload in long-horizon tasks. To systematically address these issues, we propose Memory Spatial Navigation(MSNav), a framework that fuses three modules into a synergistic architecture, which transforms fragile inference into a robust, integrated intelligence. MSNav integrates three modules: Memory Module, a dynamic map memory module that tackles memory overload through selective node pruning, enhancing long-range exploration; Spatial Module, a module for spatial reasoning and object relationship inference that improves endpoint recognition; and Decision Module, a module using LLM-based path planning to execute robust actions. Powering Spatial Module, we also introduce an Instruction-Object-Space (I-O-S) dataset and fine-tune the Qwen3-4B model into Qwen-Spatial (Qwen-Sp), which outperforms leading commercial LLMs in object list extraction, achieving higher F1 and NDCG scores on the I-O-S test set. Extensive experiments on the Room-to-Room (R2R) and REVERIE datasets demonstrate MSNav's state-of-the-art performance with significant improvements in Success Rate (SR) and Success weighted by Path Length (SPL).

9 pages, 4 figures
UAV-ON: A Benchmark for Open-World Object Goal Navigation with Aerial Agents 2025-08-22
Show

Aerial navigation is a fundamental yet underexplored capability in embodied intelligence, enabling agents to operate in large-scale, unstructured environments where traditional navigation paradigms fall short. However, most existing research follows the Vision-and-Language Navigation (VLN) paradigm, which heavily depends on sequential linguistic instructions, limiting its scalability and autonomy. To address this gap, we introduce UAV-ON, a benchmark for large-scale Object Goal Navigation (ObjectNav) by aerial agents in open-world environments, where agents operate based on high-level semantic goals without relying on detailed instructional guidance as in VLN. UAV-ON comprises 14 high-fidelity Unreal Engine environments with diverse semantic regions and complex spatial layouts, covering urban, natural, and mixed-use settings. It defines 1270 annotated target objects, each characterized by an instance-level instruction that encodes category, physical footprint, and visual descriptors, allowing grounded reasoning. These instructions serve as semantic goals, introducing realistic ambiguity and complex reasoning challenges for aerial agents. To evaluate the benchmark, we implement several baseline methods, including Aerial ObjectNav Agent (AOA), a modular policy that integrates instruction semantics with egocentric observations for long-horizon, goal-directed exploration. Empirical results show that all baselines struggle in this setting, highlighting the compounded challenges of aerial navigation and semantic goal grounding. UAV-ON aims to advance research on scalable UAV autonomy driven by semantic goal descriptions in complex real-world environments.

Accep...

Accepted to ACM MM Dataset Track 2025

AeroDuo: Aerial Duo for UAV-based Vision and Language Navigation 2025-08-21
Show

Aerial Vision-and-Language Navigation (VLN) is an emerging task that enables Unmanned Aerial Vehicles (UAVs) to navigate outdoor environments using natural language instructions and visual cues. However, due to the extended trajectories and complex maneuverability of UAVs, achieving reliable UAV-VLN performance is challenging and often requires human intervention or overly detailed instructions. To harness the advantages of UAVs' high mobility, which could provide multi-grained perspectives, while maintaining a manageable motion space for learning, we introduce a novel task called Dual-Altitude UAV Collaborative VLN (DuAl-VLN). In this task, two UAVs operate at distinct altitudes: a high-altitude UAV responsible for broad environmental reasoning, and a low-altitude UAV tasked with precise navigation. To support the training and evaluation of the DuAl-VLN, we construct the HaL-13k, a dataset comprising 13,838 collaborative high-low UAV demonstration trajectories, each paired with target-oriented language instructions. This dataset includes both unseen maps and an unseen object validation set to systematically evaluate the model's generalization capabilities across novel environments and unfamiliar targets. To consolidate their complementary strengths, we propose a dual-UAV collaborative VLN framework, AeroDuo, where the high-altitude UAV integrates a multimodal large language model (Pilot-LLM) for target reasoning, while the low-altitude UAV employs a lightweight multi-stage policy for navigation and target grounding. The two UAVs work collaboratively and only exchange minimal coordinate information to ensure efficiency.

Accep...

Accepted by ACM MM 2025

CorrectNav: Self-Correction Flywheel Empowers Vision-Language-Action Navigation Model 2025-08-14
Show

Existing vision-and-language navigation models often deviate from the correct trajectory when executing instructions. However, these models lack effective error correction capability, hindering their recovery from errors. To address this challenge, we propose Self-correction Flywheel, a novel post-training paradigm. Instead of considering the model's error trajectories on the training set as a drawback, our paradigm emphasizes their significance as a valuable data source. We have developed a method to identify deviations in these error trajectories and devised innovative techniques to automatically generate self-correction data for perception and action. These self-correction data serve as fuel to power the model's continued training. The brilliance of our paradigm is revealed when we re-evaluate the model on the training set, uncovering new error trajectories. At this time, the self-correction flywheel begins to spin. Through multiple flywheel iterations, we progressively enhance our monocular RGB-based VLA navigation model CorrectNav. Experiments on R2R-CE and RxR-CE benchmarks show CorrectNav achieves new state-of-the-art success rates of 65.1% and 69.3%, surpassing prior best VLA navigation models by 8.2% and 16.4%. Real robot tests in various indoor and outdoor environments demonstrate \method's superior capability of error correction, dynamic obstacle avoidance, and long instruction following.

Harnessing Input-Adaptive Inference for Efficient VLN 2025-08-12
Show

An emerging paradigm in vision-and-language navigation (VLN) is the use of history-aware multi-modal transformer models. Given a language instruction, these models process observation and navigation history to predict the most appropriate action for an agent. While they have significantly improved performance, the scale of these models can be a bottleneck in practical settings with limited computational resources. In this work, we propose a novel input-adaptive navigation method to enhance VLN model efficiency. We first show that existing input-adaptive mechanisms fail to reduce computations without substantial performance degradation. To address this, we introduce three adaptive algorithms, each deployed at a different level: (1) To improve spatial efficiency, we selectively process panoramic views at each observation of an agent. (2) To improve intra-model efficiency, we propose importance-based adaptive thresholding for the early-exit methods. (3) To improve temporal efficiency, we implement a caching mechanism that prevents reprocessing of views previously seen by the agent. In evaluations on seven VLN benchmarks, we demonstrate over a 2$\times$ reduction in computation across three off-the-shelf agents in both standard and continuous environments. Our code is publicly available at https://github.com/secure-ai-systems-group/adaptive-vision-and-language-navigation.

Accep...

Accepted to ICCV 2025 [Poster]

Exploring Spatial Representation to Enhance LLM Reasoning in Aerial Vision-Language Navigation 2025-08-11
Show

Aerial Vision-and-Language Navigation (VLN) is a novel task enabling Unmanned Aerial Vehicles (UAVs) to navigate in outdoor environments through natural language instructions and visual cues. However, it remains challenging due to the complex spatial relationships in aerial scenes.In this paper, we propose a training-free, zero-shot framework for aerial VLN tasks, where the large language model (LLM) is leveraged as the agent for action prediction. Specifically, we develop a novel Semantic-Topo-Metric Representation (STMR) to enhance the spatial reasoning capabilities of LLMs. This is achieved by extracting and projecting instruction-related semantic masks onto a top-down map, which presents spatial and topological information about surrounding landmarks and grows during the navigation process. At each step, a local map centered at the UAV is extracted from the growing top-down map, and transformed into a ma trix representation with distance metrics, serving as the text prompt to LLM for action prediction in response to the given instruction. Experiments conducted in real and simulation environments have proved the effectiveness and robustness of our method, achieving absolute success rate improvements of 26.8% and 5.8% over current state-of-the-art methods on simple and complex navigation tasks, respectively. The dataset and code will be released soon.

AgriVLN: Vision-and-Language Navigation for Agricultural Robots 2025-08-10
Show

Agricultural robots have emerged as powerful members in agricultural tasks, nevertheless, still heavily rely on manual operation or untransportable railway for movement, resulting in limited mobility and poor adaptability. Vision-and-Language Navigation (VLN) enables robots to navigate to the target destinations following natural language instructions, demonstrating strong performance on several domains. However, none of the existing benchmarks or methods is specifically designed for agricultural scenes. To bridge this gap, we propose Agriculture to Agriculture (A2A) benchmark, containing 1,560 episodes across six diverse agricultural scenes, in which all realistic RGB videos are captured by front-facing camera on a quadruped robot at a height of 0.38 meters, aligning with the practical deployment conditions. Meanwhile, we propose Vision-and-Language Navigation for Agricultural Robots (AgriVLN) baseline based on Vision-Language Model (VLM) prompted with carefully crafted templates, which can understand both given instructions and agricultural environments to generate appropriate low-level actions for robot control. When evaluated on A2A, AgriVLN performs well on short instructions but struggles with long instructions, because it often fails to track which part of the instruction is currently being executed. To address this, we further propose Subtask List (STL) instruction decomposition module and integrate it into AgriVLN, improving Success Rate (SR) from 0.33 to 0.47. We additionally compare AgriVLN with several existing VLN methods, demonstrating the state-of-the-art performance in the agricultural domain.

Following Route Instructions using Large Vision-Language Models: A Comparison between Low-level and Panoramic Action Spaces 2025-08-04
Show

Vision-and-Language Navigation (VLN) refers to the task of enabling autonomous robots to navigate unfamiliar environments by following natural language instructions. While recent Large Vision-Language Models (LVLMs) have shown promise in this task, most current VLM systems rely on models specifically designed and optimized for navigation, leaving the potential of off-the-shelf LVLMs underexplored. Furthermore, while older VLN approaches used low-level action spaces with egocentric views and atomic actions (such as "turn left" or "move forward"), newer models tend to favor panoramic action spaces with discrete navigable viewpoints. This paper investigates (1) whether off-the-shelf LVLMs (fine-tuned without architectural modifications or simulator-based training) can effectively support VLN tasks and (2) whether such models can support both low-level and panoramic action paradigms. To this end, we fine-tune the open-source model Qwen2.5-VL-3B-Instruct on the Room-to-Room (R2R) dataset and evaluate its empirical performance across both low-level and panoramic action spaces. The best resulting model achieves a 41% success rate on the R2R test set, demonstrating that while off-the-shelf LVLMs can learn to perform Vision-and-Language Navigation, they still lag behind models specifically designed for this task.

This ...

This paper has been accepted to ICNSLP 2025

CityNav: A Large-Scale Dataset for Real-World Aerial Navigation 2025-08-02
Show

Vision-and-language navigation (VLN) aims to develop agents capable of navigating in realistic environments. While recent cross-modal training approaches have significantly improved navigation performance in both indoor and outdoor scenarios, aerial navigation over real-world cities remains underexplored primarily due to limited datasets and the difficulty of integrating visual and geographic information. To fill this gap, we introduce CityNav, the first large-scale real-world dataset for aerial VLN. Our dataset consists of 32,637 human demonstration trajectories, each paired with a natural language description, covering 4.65 km$^2$ across two real cities: Cambridge and Birmingham. In contrast to existing datasets composed of synthetic scenes such as AerialVLN, our dataset presents a unique challenge because agents must interpret spatial relationships between real-world landmarks and the navigation destination, making CityNav an essential benchmark for advancing aerial VLN. Furthermore, as an initial step toward addressing this challenge, we provide a methodology of creating geographic semantic maps that can be used as an auxiliary modality input during navigation. In our experiments, we compare performance of three representative aerial VLN agents (Seq2seq, CMA and AerialVLN models) and demonstrate that the semantic map representation significantly improves their navigation performance.

ICCV2...

ICCV2025. The first two authors are equally contributed. Project page: https://water-cookie.github.io/city-nav-proj/

NavMorph: A Self-Evolving World Model for Vision-and-Language Navigation in Continuous Environments 2025-07-22
Show

Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to execute sequential navigation actions in complex environments guided by natural language instructions. Current approaches often struggle with generalizing to novel environments and adapting to ongoing changes during navigation. Inspired by human cognition, we present NavMorph, a self-evolving world model framework that enhances environmental understanding and decision-making in VLN-CE tasks. NavMorph employs compact latent representations to model environmental dynamics, equipping agents with foresight for adaptive planning and policy refinement. By integrating a novel Contextual Evolution Memory, NavMorph leverages scene-contextual information to support effective navigation while maintaining online adaptability. Extensive experiments demonstrate that our method achieves notable performance improvements on popular VLN-CE benchmarks. Code is available at https://github.com/Feliciaxyao/NavMorph.

Accep...

Accepted by ICCV 2025

MapNav: A Novel Memory Representation via Annotated Semantic Maps for Vision-and-Language Navigation 2025-07-10
Show

Vision-and-language navigation (VLN) is a key task in Embodied AI, requiring agents to navigate diverse and unseen environments while following natural language instructions. Traditional approaches rely heavily on historical observations as spatio-temporal contexts for decision making, leading to significant storage and computational overhead. In this paper, we introduce MapNav, a novel end-to-end VLN model that leverages Annotated Semantic Map (ASM) to replace historical frames. Specifically, our approach constructs a top-down semantic map at the start of each episode and update it at each timestep, allowing for precise object mapping and structured navigation information. Then, we enhance this map with explicit textual labels for key regions, transforming abstract semantics into clear navigation cues and generate our ASM. MapNav agent using the constructed ASM as input, and use the powerful end-to-end capabilities of VLM to empower VLN. Extensive experiments demonstrate that MapNav achieves state-of-the-art (SOTA) performance in both simulated and real-world environments, validating the effectiveness of our method. Moreover, we will release our ASM generation source code and dataset to ensure reproducibility, contributing valuable resources to the field. We believe that our proposed MapNav can be used as a new memory representation method in VLN, paving the way for future research in this field.

SkyVLN: Vision-and-Language Navigation and NMPC Control for UAVs in Urban Environments 2025-07-09
Show

Unmanned Aerial Vehicles (UAVs) have emerged as versatile tools across various sectors, driven by their mobility and adaptability. This paper introduces SkyVLN, a novel framework integrating vision-and-language navigation (VLN) with Nonlinear Model Predictive Control (NMPC) to enhance UAV autonomy in complex urban environments. Unlike traditional navigation methods, SkyVLN leverages Large Language Models (LLMs) to interpret natural language instructions and visual observations, enabling UAVs to navigate through dynamic 3D spaces with improved accuracy and robustness. We present a multimodal navigation agent equipped with a fine-grained spatial verbalizer and a history path memory mechanism. These components allow the UAV to disambiguate spatial contexts, handle ambiguous instructions, and backtrack when necessary. The framework also incorporates an NMPC module for dynamic obstacle avoidance, ensuring precise trajectory tracking and collision prevention. To validate our approach, we developed a high-fidelity 3D urban simulation environment using AirSim, featuring realistic imagery and dynamic urban elements. Extensive experiments demonstrate that SkyVLN significantly improves navigation success rates and efficiency, particularly in new and unseen environments.

8 pag...

8 pages, 9 figures, has been accepted by IROS 2025

StreamVLN: Streaming Vision-and-Language Navigation via SlowFast Context Modeling 2025-07-07
Show

Vision-and-Language Navigation (VLN) in real-world settings requires agents to process continuous visual streams and generate actions with low latency grounded in language instructions. While Video-based Large Language Models (Video-LLMs) have driven recent progress, current VLN methods based on Video-LLM often face trade-offs among fine-grained visual understanding, long-term context modeling and computational efficiency. We introduce StreamVLN, a streaming VLN framework that employs a hybrid slow-fast context modeling strategy to support multi-modal reasoning over interleaved vision, language and action inputs. The fast-streaming dialogue context facilitates responsive action generation through a sliding-window of active dialogues, while the slow-updating memory context compresses historical visual states using a 3D-aware token pruning strategy. With this slow-fast design, StreamVLN achieves coherent multi-turn dialogue through efficient KV cache reuse, supporting long video streams with bounded context size and inference cost. Experiments on VLN-CE benchmarks demonstrate state-of-the-art performance with stable low latency, ensuring robustness and efficiency in real-world deployment. The project page is: \href{https://streamvln.github.io/}{https://streamvln.github.io/}.

"Hi AirStar, Guide Me to the Badminton Court." 2025-07-06
Show

Unmanned Aerial Vehicles, operating in environments with relatively few obstacles, offer high maneuverability and full three-dimensional mobility. This allows them to rapidly approach objects and perform a wide range of tasks often challenging for ground robots, making them ideal for exploration, inspection, aerial imaging, and everyday assistance. In this paper, we introduce AirStar, a UAV-centric embodied platform that turns a UAV into an intelligent aerial assistant: a large language model acts as the cognitive core for environmental understanding, contextual reasoning, and task planning. AirStar accepts natural interaction through voice commands and gestures, removing the need for a remote controller and significantly broadening its user base. It combines geospatial knowledge-driven long-distance navigation with contextual reasoning for fine-grained short-range control, resulting in an efficient and accurate vision-and-language navigation (VLN) capability.Furthermore, the system also offers built-in capabilities such as cross-modal question answering, intelligent filming, and target tracking. With a highly extensible framework, it supports seamless integration of new functionalities, paving the way toward a general-purpose, instruction-driven intelligent UAV agent. The supplementary PPT is available at \href{https://buaa-colalab.github.io/airstar.github.io}{https://buaa-colalab.github.io/airstar.github.io}.

World-Consistent Data Generation for Vision-and-Language Navigation 2025-06-25
Show

Vision-and-Language Navigation (VLN) is a challenging task that requires an agent to navigate through photorealistic environments following natural-language instructions. One main obstacle existing in VLN is data scarcity, leading to poor generalization performance over unseen environments. Though data argumentation is a promising way for scaling up the dataset, how to generate VLN data both diverse and world-consistent remains problematic. To cope with this issue, we propose the world-consistent data generation (WCGEN), an efficacious data-augmentation framework satisfying both diversity and world-consistency, aimed at enhancing the generalization of agents to novel environments. Roughly, our framework consists of two stages, the trajectory stage which leverages a point-cloud based technique to ensure spatial coherency among viewpoints, and the viewpoint stage which adopts a novel angle synthesis method to guarantee spatial and wraparound consistency within the entire observation. By accurately predicting viewpoint changes with 3D knowledge, our approach maintains the world-consistency during the generation procedure. Experiments on a wide range of datasets verify the effectiveness of our method, demonstrating that our data augmentation strategy enables agents to achieve new state-of-the-art results on all navigation tasks, and is capable of enhancing the VLN agents' generalization ability to unseen environments.

Cross from Left to Right Brain: Adaptive Text Dreamer for Vision-and-Language Navigation 2025-06-22
Show

Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via \textit{language} form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is \href{https://github.com/zhangpingrui/Adaptive-Text-Dreamer}{here}.

Language and Planning in Robotic Navigation: A Multilingual Evaluation of State-of-the-Art Models 2025-06-17
Show

Large Language Models (LLMs) such as GPT-4, trained on huge amount of datasets spanning multiple domains, exhibit significant reasoning, understanding, and planning capabilities across various tasks. This study presents the first-ever work in Arabic language integration within the Vision-and-Language Navigation (VLN) domain in robotics, an area that has been notably underexplored in existing research. We perform a comprehensive evaluation of state-of-the-art multi-lingual Small Language Models (SLMs), including GPT-4o mini, Llama 3 8B, and Phi-3 medium 14B, alongside the Arabic-centric LLM, Jais. Our approach utilizes the NavGPT framework, a pure LLM-based instruction-following navigation agent, to assess the impact of language on navigation reasoning through zero-shot sequential action prediction using the R2R dataset. Through comprehensive experiments, we demonstrate that our framework is capable of high-level planning for navigation tasks when provided with instructions in both English and Arabic. However, certain models struggled with reasoning and planning in the Arabic language due to inherent limitations in their capabilities, sub-optimal performance, and parsing issues. These findings highlight the importance of enhancing planning and reasoning capabilities in language models for effective navigation, emphasizing this as a key area for further development while also unlocking the potential of Arabic-language models for impactful real-world applications.

This ...

This work has been accepted for presentation at LM4Plan@AAAI'25. For more details, please check: https://llmforplanning.github.io/

SmartWay: Enhanced Waypoint Prediction and Backtracking for Zero-Shot Vision-and-Language Navigation 2025-06-17
Show

Vision-and-Language Navigation (VLN) in continuous environments requires agents to interpret natural language instructions while navigating unconstrained 3D spaces. Existing VLN-CE frameworks rely on a two-stage approach: a waypoint predictor to generate waypoints and a navigator to execute movements. However, current waypoint predictors struggle with spatial awareness, while navigators lack historical reasoning and backtracking capabilities, limiting adaptability. We propose a zero-shot VLN-CE framework integrating an enhanced waypoint predictor with a Multi-modal Large Language Model (MLLM)-based navigator. Our predictor employs a stronger vision encoder, masked cross-attention fusion, and an occupancy-aware loss for better waypoint quality. The navigator incorporates history-aware reasoning and adaptive path planning with backtracking, improving robustness. Experiments on R2R-CE and MP3D benchmarks show our method achieves state-of-the-art (SOTA) performance in zero-shot settings, demonstrating competitive results compared to fully supervised methods. Real-world validation on Turtlebot 4 further highlights its adaptability.

Accep...

Accepted by IROS 2025. Project website: https://sxyxs.github.io/smartway/

Grounded Vision-Language Navigation for UAVs with Open-Vocabulary Goal Understanding 2025-06-12
Show

Vision-and-language navigation (VLN) is a long-standing challenge in autonomous robotics, aiming to empower agents with the ability to follow human instructions while navigating complex environments. Two key bottlenecks remain in this field: generalization to out-of-distribution environments and reliance on fixed discrete action spaces. To address these challenges, we propose Vision-Language Fly (VLFly), a framework tailored for Unmanned Aerial Vehicles (UAVs) to execute language-guided flight. Without the requirement for localization or active ranging sensors, VLFly outputs continuous velocity commands purely from egocentric observations captured by an onboard monocular camera. The VLFly integrates three modules: an instruction encoder based on a large language model (LLM) that reformulates high-level language into structured prompts, a goal retriever powered by a vision-language model (VLM) that matches these prompts to goal images via vision-language similarity, and a waypoint planner that generates executable trajectories for real-time UAV control. VLFly is evaluated across diverse simulation environments without additional fine-tuning and consistently outperforms all baselines. Moreover, real-world VLN tasks in indoor and outdoor environments under direct and indirect instructions demonstrate that VLFly achieves robust open-vocabulary goal understanding and generalized navigation capabilities, even in the presence of abstract language input.

A Navigation Framework Utilizing Vision-Language Models 2025-06-11
Show

Vision-and-Language Navigation (VLN) presents a complex challenge in embodied AI, requiring agents to interpret natural language instructions and navigate through visually rich, unfamiliar environments. Recent advances in large vision-language models (LVLMs), such as CLIP and Flamingo, have significantly improved multimodal understanding but introduced new challenges related to computational cost and real-time deployment. In this project, we propose a modular, plug-and-play navigation framework that decouples vision-language understanding from action planning. By integrating a frozen vision-language model, Qwen2.5-VL-7B-Instruct, with lightweight planning logic, we aim to achieve flexible, fast, and adaptable navigation without extensive model fine-tuning. Our framework leverages prompt engineering, structured history management, and a two-frame visual input strategy to enhance decision-making continuity across navigation steps. We evaluate our system on the Room-to-Room benchmark within the VLN-CE setting using the Matterport3D dataset and Habitat-Lab simulation environment. Although our initial results reveal challenges in generalizing to unseen environments under strict evaluation settings, our modular approach lays a foundation for scalable and efficient navigation systems, highlighting promising directions for future improvement through enhanced environmental priors and expanded multimodal input integration.

TRAVEL: Training-Free Retrieval and Alignment for Vision-and-Language Navigation 2025-06-09
Show

In this work, we propose a modular approach for the Vision-Language Navigation (VLN) task by decomposing the problem into four sub-modules that use state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs) in a zero-shot setting. Given navigation instruction in natural language, we first prompt LLM to extract the landmarks and the order in which they are visited. Assuming the known model of the environment, we retrieve the top-k locations of the last landmark and generate $k$ path hypotheses from the starting location to the last landmark using the shortest path algorithm on the topological map of the environment. Each path hypothesis is represented by a sequence of panoramas. We then use dynamic programming to compute the alignment score between the sequence of panoramas and the sequence of landmark names, which match scores obtained from VLM. Finally, we compute the nDTW metric between the hypothesis that yields the highest alignment score to evaluate the path fidelity. We demonstrate superior performance compared to other approaches that use joint semantic maps like VLMaps on the complex R2R-Habitat instruction dataset and quantify in detail the effect of visual grounding on navigation performance.

Accep...

Accepted to CVPR 2025 Workshop - Foundation Models Meet Embodied Agents

Text-guided Generation of Efficient Personalized Inspection Plans 2025-06-03
Show

We propose a training-free, Vision-Language Model (VLM)-guided approach for efficiently generating trajectories to facilitate target inspection planning based on text descriptions. Unlike existing Vision-and-Language Navigation (VLN) methods designed for general agents in unknown environments, our approach specifically targets the efficient inspection of known scenes, with widespread applications in fields such as medical, marine, and civil engineering. Leveraging VLMs, our method first extracts points of interest (POIs) from the text description, then identifies a set of waypoints from which POIs are both salient and align with the spatial constraints defined in the prompt. Next, we interact with the VLM to iteratively refine the trajectory, preserving the visibility and prominence of the POIs. Further, we solve a Traveling Salesman Problem (TSP) to find the most efficient visitation order that satisfies the order constraint implied in the text description. Finally, we apply trajectory optimization to generate smooth, executable inspection paths for aerial and underwater vehicles. We have evaluated our method across a series of both handcrafted and real-world scanned environments. The results demonstrate that our approach effectively generates inspection planning trajectories that adhere to user instructions.

8 pages, 5 figures
Disrupting Vision-Language Model-Driven Navigation Services via Adversarial Object Fusion 2025-05-29
Show

We present Adversarial Object Fusion (AdvOF), a novel attack framework targeting vision-and-language navigation (VLN) agents in service-oriented environments by generating adversarial 3D objects. While foundational models like Large Language Models (LLMs) and Vision Language Models (VLMs) have enhanced service-oriented navigation systems through improved perception and decision-making, their integration introduces vulnerabilities in mission-critical service workflows. Existing adversarial attacks fail to address service computing contexts, where reliability and quality-of-service (QoS) are paramount. We utilize AdvOF to investigate and explore the impact of adversarial environments on the VLM-based perception module of VLN agents. In particular, AdvOF first precisely aggregates and aligns the victim object positions in both 2D and 3D space, defining and rendering adversarial objects. Then, we collaboratively optimize the adversarial object with regularization between the adversarial and victim object across physical properties and VLM perceptions. Through assigning importance weights to varying views, the optimization is processed stably and multi-viewedly by iterative fusions from local updates and justifications. Our extensive evaluations demonstrate AdvOF can effectively degrade agent performance under adversarial conditions while maintaining minimal interference with normal navigation tasks. This work advances the understanding of service security in VLM-powered navigation systems, providing computational foundations for robust service composition in physical-world deployments.

Under review
FlightGPT: Towards Generalizable and Interpretable UAV Vision-and-Language Navigation with Vision-Language Models 2025-05-19
Show

Unmanned Aerial Vehicle (UAV) Vision-and-Language Navigation (VLN) is vital for applications such as disaster response, logistics delivery, and urban inspection. However, existing methods often struggle with insufficient multimodal fusion, weak generalization, and poor interpretability. To address these challenges, we propose FlightGPT, a novel UAV VLN framework built upon Vision-Language Models (VLMs) with powerful multimodal perception capabilities. We design a two-stage training pipeline: first, Supervised Fine-Tuning (SFT) using high-quality demonstrations to improve initialization and structured reasoning; then, Group Relative Policy Optimization (GRPO) algorithm, guided by a composite reward that considers goal accuracy, reasoning quality, and format compliance, to enhance generalization and adaptability. Furthermore, FlightGPT introduces a Chain-of-Thought (CoT)-based reasoning mechanism to improve decision interpretability. Extensive experiments on the city-scale dataset CityNav demonstrate that FlightGPT achieves state-of-the-art performance across all scenarios, with a 9.22% higher success rate than the strongest baseline in unseen environments. Our implementation is publicly available.

BadNAVer: Exploring Jailbreak Attacks On Vision-and-Language Navigation 2025-05-18
Show

Multimodal large language models (MLLMs) have recently gained attention for their generalization and reasoning capabilities in Vision-and-Language Navigation (VLN) tasks, leading to the rise of MLLM-driven navigators. However, MLLMs are vulnerable to jailbreak attacks, where crafted prompts bypass safety mechanisms and trigger undesired outputs. In embodied scenarios, such vulnerabilities pose greater risks: unlike plain text models that generate toxic content, embodied agents may interpret malicious instructions as executable commands, potentially leading to real-world harm. In this paper, we present the first systematic jailbreak attack paradigm targeting MLLM-driven navigator. We propose a three-tiered attack framework and construct malicious queries across four intent categories, concatenated with standard navigation instructions. In the Matterport3D simulator, we evaluate navigation agents powered by five MLLMs and report an average attack success rate over 90%. To test real-world feasibility, we replicate the attack on a physical robot. Our results show that even well-crafted prompts can induce harmful actions and intents in MLLMs, posing risks beyond toxic output and potentially leading to physical harm.

8 pages, 4 figures
VISTA: Generative Visual Imagination for Vision-and-Language Navigation 2025-05-17
Show

Vision-and-Language Navigation (VLN) tasks agents with locating specific objects in unseen environments using natural language instructions and visual cues. Many existing VLN approaches typically follow an 'observe-and-reason' schema, that is, agents observe the environment and decide on the next action to take based on the visual observations of their surroundings. They often face challenges in long-horizon scenarios due to limitations in immediate observation and vision-language modality gaps. To overcome this, we present VISTA, a novel framework that employs an 'imagine-and-align' navigation strategy. Specifically, we leverage the generative prior of pre-trained diffusion models for dynamic visual imagination conditioned on both local observations and high-level language instructions. A Perceptual Alignment Filter module then grounds these goal imaginations against current observations, guiding an interpretable and structured reasoning process for action selection. Experiments show that VISTA sets new state-of-the-art results on Room-to-Room (R2R) and RoboTHOR benchmarks, e.g.,+3.6% increase in Success Rate on R2R. Extensive ablation analysis underscores the value of integrating forward-looking imagination, perceptual alignment, and structured reasoning for robust navigation in long-horizon environments.

13 pages, 5 figures
Dynam3D: Dynamic Layered 3D Tokens Empower VLM for Vision-and-Language Navigation 2025-05-16
Show

Vision-and-Language Navigation (VLN) is a core task where embodied agents leverage their spatial mobility to navigate in 3D environments toward designated destinations based on natural language instructions. Recently, video-language large models (Video-VLMs) with strong generalization capabilities and rich commonsense knowledge have shown remarkable performance when applied to VLN tasks. However, these models still encounter the following challenges when applied to real-world 3D navigation: 1) Insufficient understanding of 3D geometry and spatial semantics; 2) Limited capacity for large-scale exploration and long-term environmental memory; 3) Poor adaptability to dynamic and changing environments.To address these limitations, we propose Dynam3D, a dynamic layered 3D representation model that leverages language-aligned, generalizable, and hierarchical 3D representations as visual input to train 3D-VLM in navigation action prediction. Given posed RGB-D images, our Dynam3D projects 2D CLIP features into 3D space and constructs multi-level 3D patch-instance-zone representations for 3D geometric and semantic understanding with a dynamic and layer-wise update strategy. Our Dynam3D is capable of online encoding and localization of 3D instances, and dynamically updates them in changing environments to provide large-scale exploration and long-term memory capabilities for navigation. By leveraging large-scale 3D-language pretraining and task-specific adaptation, our Dynam3D sets new state-of-the-art performance on VLN benchmarks including R2R-CE, REVERIE-CE and NavRAG-CE under monocular settings. Furthermore, experiments for pre-exploration, lifelong memory, and real-world robot validate the effectiveness of practical deployment.

CityNavAgent: Aerial Vision-and-Language Navigation with Hierarchical Semantic Planning and Global Memory 2025-05-08
Show

Aerial vision-and-language navigation (VLN), requiring drones to interpret natural language instructions and navigate complex urban environments, emerges as a critical embodied AI challenge that bridges human-robot interaction, 3D spatial reasoning, and real-world deployment. Although existing ground VLN agents achieved notable results in indoor and outdoor settings, they struggle in aerial VLN due to the absence of predefined navigation graphs and the exponentially expanding action space in long-horizon exploration. In this work, we propose \textbf{CityNavAgent}, a large language model (LLM)-empowered agent that significantly reduces the navigation complexity for urban aerial VLN. Specifically, we design a hierarchical semantic planning module (HSPM) that decomposes the long-horizon task into sub-goals with different semantic levels. The agent reaches the target progressively by achieving sub-goals with different capacities of the LLM. Additionally, a global memory module storing historical trajectories into a topological graph is developed to simplify navigation for visited targets. Extensive benchmark experiments show that our method achieves state-of-the-art performance with significant improvement. Further experiments demonstrate the effectiveness of different modules of CityNavAgent for aerial VLN in continuous city environments. The code is available at \href{https://github.com/VinceOuti/CityNavAgent}{link}.

MetaScenes: Towards Automated Replica Creation for Real-world 3D Scans 2025-05-05
Show

Embodied AI (EAI) research requires high-quality, diverse 3D scenes to effectively support skill acquisition, sim-to-real transfer, and generalization. Achieving these quality standards, however, necessitates the precise replication of real-world object diversity. Existing datasets demonstrate that this process heavily relies on artist-driven designs, which demand substantial human effort and present significant scalability challenges. To scalably produce realistic and interactive 3D scenes, we first present MetaScenes, a large-scale, simulatable 3D scene dataset constructed from real-world scans, which includes 15366 objects spanning 831 fine-grained categories. Then, we introduce Scan2Sim, a robust multi-modal alignment model, which enables the automated, high-quality replacement of assets, thereby eliminating the reliance on artist-driven designs for scaling 3D scenes. We further propose two benchmarks to evaluate MetaScenes: a detailed scene synthesis task focused on small item layouts for robotic manipulation and a domain transfer task in vision-and-language navigation (VLN) to validate cross-domain transfer. Results confirm MetaScene's potential to enhance EAI by supporting more generalizable agent learning and sim-to-real applications, introducing new possibilities for EAI research. Project website: https://meta-scenes.github.io/.

CVPR 2025
DOPE: Dual Object Perception-Enhancement Network for Vision-and-Language Navigation 2025-04-30
Show

Vision-and-Language Navigation (VLN) is a challenging task where an agent must understand language instructions and navigate unfamiliar environments using visual cues. The agent must accurately locate the target based on visual information from the environment and complete tasks through interaction with the surroundings. Despite significant advancements in this field, two major limitations persist: (1) Many existing methods input complete language instructions directly into multi-layer Transformer networks without fully exploiting the detailed information within the instructions, thereby limiting the agent's language understanding capabilities during task execution; (2) Current approaches often overlook the modeling of object relationships across different modalities, failing to effectively utilize latent clues between objects, which affects the accuracy and robustness of navigation decisions. We propose a Dual Object Perception-Enhancement Network (DOPE) to address these issues to improve navigation performance. First, we design a Text Semantic Extraction (TSE) to extract relatively essential phrases from the text and input them into the Text Object Perception-Augmentation (TOPA) to fully leverage details such as objects and actions within the instructions. Second, we introduce an Image Object Perception-Augmentation (IOPA), which performs additional modeling of object information across different modalities, enabling the model to more effectively utilize latent clues between objects in images and text, enhancing decision-making accuracy. Extensive experiments on the R2R and REVERIE datasets validate the efficacy of the proposed approach.

Main ...

Main paper (10 pages). Accepted for publication by ICMR(International Conference on Multimedia Retrieval) 2025

Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation 2025-04-24
Show

Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.

11 pa...

11 pages, 4 figures, Submitted to ACM MM 2025

Endowing Embodied Agents with Spatial Reasoning Capabilities for Vision-and-Language Navigation 2025-04-09
Show

Enhancing the spatial perception capabilities of mobile robots is crucial for achieving embodied Vision-and-Language Navigation (VLN). Although significant progress has been made in simulated environments, directly transferring these capabilities to real-world scenarios often results in severe hallucination phenomena, causing robots to lose effective spatial awareness. To address this issue, we propose BrainNav, a bio-inspired spatial cognitive navigation framework inspired by biological spatial cognition theories and cognitive map theory. BrainNav integrates dual-map (coordinate map and topological map) and dual-orientation (relative orientation and absolute orientation) strategies, enabling real-time navigation through dynamic scene capture and path planning. Its five core modules-Hippocampal Memory Hub, Visual Cortex Perception Engine, Parietal Spatial Constructor, Prefrontal Decision Center, and Cerebellar Motion Execution Unit-mimic biological cognitive functions to reduce spatial hallucinations and enhance adaptability. Validated in a zero-shot real-world lab environment using the Limo Pro robot, BrainNav, compatible with GPT-4, outperforms existing State-of-the-Art (SOTA) Vision-and-Language Navigation in Continuous Environments (VLN-CE) methods without fine-tuning.

Vision Language Action

Title Date Abstract Comment
RL-VLA$^3$: Reinforcement Learning VLA Accelerating via Full Asynchronism 2026-02-05
Show

In recent years, Vision-Language-Action (VLA) models have emerged as a crucial pathway towards general embodied intelligence, yet their training efficiency has become a key bottleneck. Although existing reinforcement learning (RL)-based training frameworks like RLinf can enhance model generalization, they still rely on synchronous execution, leading to severe resource underutilization and throughput limitations during environment interaction, policy generation (rollout), and model update phases (actor). To overcome this challenge, this paper, for the first time, proposes and implements a fully-asynchronous policy training framework encompassing the entire pipeline from environment interaction, rollout generation, to actor policy updates. Systematically drawing inspiration from asynchronous optimization ideas in large model RL, our framework designs a multi-level decoupled architecture. This includes asynchronous parallelization of environment interaction and trajectory collection, streaming execution for policy generation, and decoupled scheduling for training updates. We validated the effectiveness of our method across diverse VLA models and environments. On the LIBERO benchmark, the framework achieves throughput improvements of up to 59.25% compared to existing synchronous strategies. When deeply optimizing separation strategies, throughput can be increased by as much as 126.67%. We verified the effectiveness of each asynchronous component via ablation studies. Scaling law validation across 8 to 256 GPUs demonstrates our method's excellent scalability under most conditions.

Benchmarking Affordance Generalization with BusyBox 2026-02-05
Show

Vision-Language-Action (VLA) models have been attracting the attention of researchers and practitioners thanks to their promise of generalization. Although single-task policies still offer competitive performance, VLAs are increasingly able to handle commands and environments unseen in their training set. While generalization in vision and language space is undoubtedly important for robust versatile behaviors, a key meta-skill VLAs need to possess is affordance generalization -- the ability to manipulate new objects with familiar physical features. In this work, we present BusyBox, a physical benchmark for systematic semi-automatic evaluation of VLAs' affordance generalization. BusyBox consists of 6 modules with switches, sliders, wires, buttons, a display, and a dial. The modules can be swapped and rotated to create a multitude of BusyBox variations with different visual appearances but the same set of affordances. We empirically demonstrate that generalization across BusyBox variants is highly challenging even for strong open-weights VLAs such as $π_{0.5}$ and GR00T-N1.6. To encourage the research community to evaluate their own VLAs on BusyBox and to propose new affordance generalization experiments, we have designed BusyBox to be easy to build in most robotics labs. We release the full set of CAD files for 3D-printing its parts as well as a bill of materials for (optionally) assembling its electronics. We also publish a dataset of language-annotated demonstrations that we collected using the common bimanual Mobile Aloha robot on the canonical BusyBox configuration. All of the released materials are available at https://microsoft.github.io/BusyBox.

RoboPaint: From Human Demonstration to Any Robot and Any View 2026-02-05
Show

Acquiring large-scale, high-fidelity robot demonstration data remains a critical bottleneck for scaling Vision-Language-Action (VLA) models in dexterous manipulation. We propose a Real-Sim-Real data collection and data editing pipeline that transforms human demonstrations into robot-executable, environment-specific training data without direct robot teleoperation. Standardized data collection rooms are built to capture multimodal human demonstrations (synchronized 3 RGB-D videos, 11 RGB videos, 29-DoF glove joint angles, and 14-channel tactile signals). Based on these human demonstrations, we introduce a tactile-aware retargeting method that maps human hand states to robot dex-hand states via geometry and force-guided optimization. Then the retargeted robot trajectories are rendered in a photorealistic Isaac Sim environment to build robot training data. Real world experiments have demonstrated: (1) The retargeted dex-hand trajectories achieve an 84% success rate across 10 diverse object manipulation tasks. (2) VLA policies (Pi0.5) trained exclusively on our generated data achieve 80% average success rate on three representative tasks, i.e., pick-and-place, pushing and pouring. To conclude, robot training data can be efficiently "painted" from human demonstrations using our real-sim-real data pipeline. We offer a scalable, cost-effective alternative to teleoperation with minimal performance loss for complex dexterous manipulation.

17 pages
MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning 2026-02-05
Show

Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. Using the lightweight Qwen-0.5B LLM, MindDrive achieves Driving Score (DS) of 78.04 and Success Rate (SR) of 55.09% on the challenging Bench2Drive benchmark. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.

16 pa...

16 pages, 12 figures, 6 tables; Project Page: https://xiaomi-mlab.github.io/MindDrive/

MobileManiBench: Simplifying Model Verification for Mobile Manipulation 2026-02-05
Show

Vision-language-action models have advanced robotic manipulation but remain constrained by reliance on the large, teleoperation-collected datasets dominated by the static, tabletop scenes. We propose a simulation-first framework to verify VLA architectures before real-world deployment and introduce MobileManiBench, a large-scale benchmark for mobile-based robotic manipulation. Built on NVIDIA Isaac Sim and powered by reinforcement learning, our pipeline autonomously generates diverse manipulation trajectories with rich annotations (language instructions, multi-view RGB-depth-segmentation images, synchronized object/robot states and actions). MobileManiBench features 2 mobile platforms (parallel-gripper and dexterous-hand robots), 2 synchronized cameras (head and right wrist), 630 objects in 20 categories, 5 skills (open, close, pull, push, pick) with over 100 tasks performed in 100 realistic scenes, yielding 300K trajectories. This design enables controlled, scalable studies of robot embodiments, sensing modalities, and policy architectures, accelerating research on data efficiency and generalization. We benchmark representative VLA models and report insights into perception, reasoning, and control in complex simulated environments.

VISTA: Enhancing Visual Conditioning via Track-Following Preference Optimization in Vision-Language-Action Models 2026-02-04
Show

Vision-Language-Action (VLA) models have demonstrated strong performance across a wide range of robotic manipulation tasks. Despite the success, extending large pretrained Vision-Language Models (VLMs) to the action space can induce vision-action misalignment, where action predictions exhibit weak dependence on the current visual state, leading to unreliable action outputs. In this work, we study VLA models through the lens of visual conditioning and empirically show that successful rollouts consistently exhibit stronger visual dependence than failed ones. Motivated by this observation, we propose a training framework that explicitly strengthens visual conditioning in VLA models. Our approach first aligns action prediction with visual input via preference optimization on a track-following surrogate task, and then transfers the enhanced alignment to instruction-following task through latent-space distillation during supervised finetuning. Without introducing architectural modifications or additional data collection, our method improves both visual conditioning and task performance for discrete OpenVLA, and further yields consistent gains when extended to the continuous OpenVLA-OFT setting. Project website: https://vista-vla.github.io/ .

In su...

In submission. Project website: https://vista-vla.github.io/

Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA 2026-02-04
Show

Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.

Act, Sense, Act: Learning Non-Markovian Active Perception Strategies from Large-Scale Egocentric Human Data 2026-02-04
Show

Achieving generalizable manipulation in unconstrained environments requires the robot to proactively resolve information uncertainty, i.e., the capability of active perception. However, existing methods are often confined in limited types of sensing behaviors, restricting their applicability to complex environments. In this work, we formalize active perception as a non-Markovian process driven by information gain and decision branching, providing a structured categorization of visual active perception paradigms. Building on this perspective, we introduce CoMe-VLA, a cognitive and memory-aware vision-language-action (VLA) framework that leverages large-scale human egocentric data to learn versatile exploration and manipulation priors. Our framework integrates a cognitive auxiliary head for autonomous sub-task transitions and a dual-track memory system to maintain consistent self and environmental awareness by fusing proprioceptive and visual temporal contexts. By aligning human and robot hand-eye coordination behaviors in a unified egocentric action space, we train the model progressively in three stages. Extensive experiments on a wheel-based humanoid have demonstrated strong robustness and adaptability of our proposed method across diverse long-horizon tasks spanning multiple active perception scenarios.

PhysBrain: Human Egocentric Data as a Bridge from Vision Language Models to Physical Intelligence 2026-02-04
Show

Robotic generalization relies on physical intelligence: the ability to reason about state changes, contact-rich interactions, and long-horizon planning under egocentric perception and action. Vision Language Models (VLMs) are essential to Vision-Language-Action (VLA) systems, but the reliance on third-person training data creates a viewpoint gap for humanoid robots. Collecting massive robot-centric data is an ideal but impractical solution due to cost and diversity constraints. Conversely, human egocentric videos offer a highly scalable data source with rich interaction context, yet the embodiment mismatch prevents the direct application. To bridge this gap, we propose an Egocentric2Embodiment Translation Pipeline that transforms raw human egocentric videos into multi-level, schema-driven embodiment supervision with enforced evidence grounding and temporal consistency, enabling the construction of the Egocentric2Embodiment dataset (E2E-3M) at scale. An egocentric-aware embodied brain, termed PhysBrain, is obtained by training on the E2E-3M dataset. PhysBrain exhibits substantially improved egocentric understanding, particularly for planning. It provides an egocentric-aware initialization that enables more sample-efficient VLA fine-tuning and higher success rates, demonstrating effective transfer from human egocentric supervision to downstream robot control.

21 pages, 8 figures
GeneralVLA: Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning 2026-02-04
Show

Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.

A Survey on Vision-Language-Action Models for Embodied AI 2026-02-04
Show

Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.

Proje...

Project page: https://github.com/yueen-ma/Awesome-VLA

Reshaping Action Error Distributions for Reliable Vision-Language-Action Models 2026-02-04
Show

In robotic manipulation, vision-language-action (VLA) models have emerged as a promising paradigm for learning generalizable and scalable robot policies. Most existing VLA frameworks rely on standard supervised objectives, typically cross-entropy for discrete actions and mean squared error (MSE) for continuous action regression, which impose strong pointwise constraints on individual predictions. In this work, we focus on continuous-action VLA models and move beyond conventional MSE-based regression by reshaping action error distributions during training. Drawing on information-theoretic principles, we introduce Minimum Error Entropy (MEE) into modern VLA architectures and propose a trajectory-level MEE objective, together with two weighted variants, combined with MSE for continuous-action VLA training. We evaluate our approaches across standard, few-shot, and noisy settings on multiple representative VLA architectures, using simulation benchmarks such as LIBERO and SimplerEnv as well as real-world robotic manipulation tasks. Experimental results demonstrate consistent improvements in success rates and robustness across these settings. Under imbalanced data regimes, the gains persist within a well-characterized operating range, while incurring negligible additional training cost and no impact on inference efficiency. We further provide theoretical analyses that explain why MEE-based supervision is effective and characterize its practical range. Project Page: https://cognition2actionlab.github.io/VLA-TMEE.github.io/

SCALE: Self-uncertainty Conditioned Adaptive Looking and Execution for Vision-Language-Action Models 2026-02-04
Show

Vision-Language-Action (VLA) models have emerged as a promising paradigm for general-purpose robotic control, with test-time scaling (TTS) gaining attention to enhance robustness beyond training. However, existing TTS methods for VLAs require additional training, verifiers, and multiple forward passes, making them impractical for deployment. Moreover, they intervene only at action decoding while keeping visual representations fixed-insufficient under perceptual ambiguity, where reconsidering how to perceive is as important as deciding what to do. To address these limitations, we propose SCALE, a simple inference strategy that jointly modulates visual perception and action based on 'self-uncertainty', inspired by uncertainty-driven exploration in Active Inference theory-requiring no additional training, no verifier, and only a single forward pass. SCALE broadens exploration in both perception and action under high uncertainty, while focusing on exploitation when confident-enabling adaptive execution across varying conditions. Experiments on simulated and real-world benchmarks demonstrate that SCALE improves state-of-the-art VLAs and outperforms existing TTS methods while maintaining single-pass efficiency.

20 pages, 8 figures
Natural Language Instructions for Scene-Responsive Human-in-the-Loop Motion Planning in Autonomous Driving using Vision-Language-Action Models 2026-02-04
Show

Instruction-grounded driving, where passenger language guides trajectory planning, requires vehicles to understand intent before motion. However, most prior instruction-following planners rely on simulation or fixed command vocabularies, limiting real-world generalization. doScenes, the first real-world dataset linking free-form instructions (with referentiality) to nuScenes ground-truth motion, enables instruction-conditioned planning. In this work, we adapt OpenEMMA, an open-source MLLM-based end-to-end driving framework that ingests front-camera views and ego-state and outputs 10-step speed-curvature trajectories, to this setting, presenting a reproducible instruction-conditioned baseline on doScenes and investigate the effects of human instruction prompts on predicted driving behavior. We integrate doScenes directives as passenger-style prompts within OpenEMMA's vision-language interface, enabling linguistic conditioning before trajectory generation. Evaluated on 849 annotated scenes using ADE, we observe that instruction conditioning substantially improves robustness by preventing extreme baseline failures, yielding a 98.7% reduction in mean ADE. When such outliers are removed, instructions still influence trajectory alignment, with well-phrased prompts improving ADE by up to 5.1%. We use this analysis to discuss what makes a "good" instruction for the OpenEMMA framework. We release the evaluation prompts and scripts to establish a reproducible baseline for instruction-aware planning. GitHub: https://github.com/Mi3-Lab/doScenes-VLM-Planning

Efficient Long-Horizon Vision-Language-Action Models via Static-Dynamic Disentanglement 2026-02-03
Show

Vision-Language-Action (VLA) models have recently emerged as a promising paradigm for generalist robotic control. Built upon vision-language model (VLM) architectures, VLAs predict actions conditioned on visual observations and language instructions, achieving strong performance and generalization across tasks. However, VLAs face two major challenges: limited long-horizon context and inefficient inference due to the quadratic attention complexity and large parameter counts. Our work is motivated by the observation that much of the visual information in a trajectory remains static across timesteps (e.g., the background). Leveraging this property, we propose SD-VLA, a framework that disentangles visual inputs into multi-level static and dynamic tokens, which enables (1) retaining a single copy of static tokens across frames to significantly reduce context length, and (2) reusing the key-value (KV) cache of static tokens through a lightweight recache gate that updates only when necessary. This design enables efficient multi-frame integration and efficient inference. In addition, we introduce a new benchmark that more effectively evaluates the long-horizon temporal dependency modeling ability of VLAs. Experimental results show that our approach outperforms baselines on this benchmark by 39.8% absolute improvement in success rate, and achieves a 3.9% gain on the SimplerEnv benchmark. Moreover, SD-VLA delivers a 2.26x inference speedup over the base VLA model on the same benchmark, enabling faster and more practical real-world deployment.

QVLA: Not All Channels Are Equal in Vision-Language-Action Model's Quantization 2026-02-03
Show

The advent of Vision-Language-Action (VLA) models represents a significant leap for embodied intelligence, yet their immense computational demands critically hinder deployment on resource-constrained robotic platforms. Intuitively, low-bit quantization is a prevalent and preferred technique for large-scale model compression. However, we find that a systematic analysis of VLA model's quantization is fundamentally lacking. We argue that naively applying uniform-bit quantization from Large Language Models (LLMs) to robotics is flawed, as these methods prioritize passive data fidelity while ignoring how minor action deviations compound into catastrophic task failures. To bridge this gap, we introduce QVLA, the first action-centric quantization framework specifically designed for embodied control. In a sharp departure from the rigid, uniform-bit quantization of LLM-based methods, QVLA introduces a highly granular, channel-wise bit allocation strategy. Its core mechanism is to directly measure the final action-space sensitivity when quantizing each individual channel to various bit-widths. This process yields a precise, per-channel importance metric that guides a global optimization, which elegantly unifies quantization and pruning (0-bit) into a single, cohesive framework. Extensive evaluations on different baselines demonstrate the superiority of our approach. In the LIBERO, the quantization version of OpenVLA-OFT with our method requires only 29.2% of the original model's VRAM while maintaining 98.9% of its original performance and achieving a 1.49x speedup. This translates to a 22.6% performance improvement over the LLM-derived method SmoothQuant. Our work establishes a new, principled foundation for compressing VLA models in robotics, paving the way for deploying powerful, large-scale models on real-world hardware. Code will be released.

ICLR2026
MVP-LAM: Learning Action-Centric Latent Action via Cross-Viewpoint Reconstruction 2026-02-03
Show

Learning \emph{latent actions} from diverse human videos enables scaling robot learning beyond embodiment-specific robot datasets, and these latent actions have recently been used as pseudo-action labels for vision-language-action (VLA) model pretraining. To make VLA pretraining effective, latent actions should contain information about the underlying agent's actions despite the absence of ground-truth labels. We propose \textbf{M}ulti-\textbf{V}iew\textbf{P}oint \textbf{L}atent \textbf{A}ction \textbf{M}odel (\textbf{MVP-LAM}), which learns discrete latent actions that are highly informative about ground-truth actions from time-synchronized multi-view videos. MVP-LAM trains latent actions with a \emph{cross-viewpoint reconstruction} objective, so that a latent action inferred from one view must explain the future in another view, reducing reliance on viewpoint-specific cues. On Bridge V2, MVP-LAM produces more action-centric latent actions, achieving higher mutual information with ground-truth actions and improved action prediction, including under out-of-distribution evaluation. Finally, pretraining VLAs with MVP-LAM latent actions improves downstream manipulation performance on the SIMPLER and LIBERO-Long benchmarks.

CRL-VLA: Continual Vision-Language-Action Learning 2026-02-03
Show

Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.

RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization 2026-02-03
Show

Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.

CoFreeVLA: Collision-Free Dual-Arm Manipulation via Vision-Language-Action Model and Risk Estimation 2026-02-03
Show

Vision Language Action (VLA) models enable instruction following manipulation, yet dualarm deployment remains unsafe due to under modeled selfcollisions between arms and grasped objects. We introduce CoFreeVLA, which augments an endtoend VLA with a short horizon selfcollision risk estimator that predicts collision likelihood from proprioception, visual embeddings, and planned actions. The estimator gates risky commands, recovers to safe states via risk-guided adjustments, and shapes policy refinement for safer rollouts. It is pre-trained with model-based collision labels and posttrained on real robot rollouts for calibration. On five bimanual tasks with the PiPER robot arm, CoFreeVLA reduces selfcollisions and improves success rates versus RDT and APEX.

AIR-VLA: Vision-Language-Action Systems for Aerial Manipulation 2026-02-03
Show

While Vision-Language-Action (VLA) models have achieved remarkable success in ground-based embodied intelligence, their application to Aerial Manipulation Systems (AMS) remains a largely unexplored frontier. The inherent characteristics of AMS, including floating-base dynamics, strong coupling between the UAV and the manipulator, and the multi-step, long-horizon nature of operational tasks, pose severe challenges to existing VLA paradigms designed for static or 2D mobile bases. To bridge this gap, we propose \textbf{AIR-VLA}, the first VLA benchmark specifically tailored for aerial manipulation. We construct a physics-based simulation environment and release a high-quality multimodal dataset comprising 3000 manually teleoperated demonstrations, covering base manipulation, object & spatial understanding, semantic reasoning, and long-horizon planning. Leveraging this platform, we systematically evaluate mainstream VLA models and state-of-the-art VLM models. Our experiments not only validate the feasibility of transferring VLA paradigms to aerial systems but also, through multi-dimensional metrics tailored to aerial tasks, reveal the capabilities and boundaries of current models regarding UAV mobility, manipulator control, and high-level planning. \textbf{AIR-VLA} establishes a standardized testbed and data foundation for future research in general-purpose aerial robotics. The resource of AIR-VLA will be available at https://github.com/SpencerSon2001/AIR-VLA.

When Attention Betrays: Erasing Backdoor Attacks in Robotic Policies by Reconstructing Visual Tokens 2026-02-03
Show

Downstream fine-tuning of vision-language-action (VLA) models enhances robotics, yet exposes the pipeline to backdoor risks. Attackers can pretrain VLAs on poisoned data to implant backdoors that remain stealthy but can trigger harmful behavior during inference. However, existing defenses either lack mechanistic insight into multimodal backdoors or impose prohibitive computational costs via full-model retraining. To this end, we uncover a deep-layer attention grabbing mechanism: backdoors redirect late-stage attention and form compact embedding clusters near the clean manifold. Leveraging this insight, we introduce Bera, a test-time backdoor erasure framework that detects tokens with anomalous attention via latent-space localization, masks suspicious regions using deep-layer cues, and reconstructs a trigger-free image to break the trigger-unsafe-action mapping while restoring correct behavior. Unlike prior defenses, Bera requires neither retraining of VLAs nor any changes to the training pipeline. Extensive experiments across multiple embodied platforms and tasks show that Bera effectively maintains nominal performance, significantly reduces attack success rates, and consistently restores benign behavior from backdoored outputs, thereby offering a robust and practical defense mechanism for securing robotic systems.

ICRA2026 accepted
Accelerating Structured Chain-of-Thought in Autonomous Vehicles 2026-02-02
Show

Chain-of-Thought (CoT) reasoning enhances the decision-making capabilities of vision-language-action models in autonomous driving, but its autoregressive nature introduces significant inference latency, making it impractical for real-time applications. To address this, we introduce FastDriveCoT, a novel parallel decoding method that accelerates template-structured CoT. Our approach decomposes the reasoning process into a dependency graph of distinct sub-tasks, such as identifying critical objects and summarizing traffic rules, some of which can be generated in parallel. By generating multiple independent reasoning steps concurrently within a single forward pass, we significantly reduce the number of sequential computations. Experiments demonstrate a 3-4$\times$ speedup in CoT generation and a substantial reduction in end-to-end latency across various model architectures, all while preserving the original downstream task improvements brought by incorporating CoT reasoning.

TIC-VLA: A Think-in-Control Vision-Language-Action Model for Robot Navigation in Dynamic Environments 2026-02-02
Show

Robots in dynamic, human-centric environments must follow language instructions while maintaining real-time reactive control. Vision-language-action (VLA) models offer a promising framework, but they assume temporally aligned reasoning and control, despite semantic inference being inherently delayed relative to real-time action. We introduce Think-in-Control (TIC)-VLA, a latency-aware framework that explicitly models delayed semantic reasoning during action generation. TIC-VLA defines a delayed semantic-control interface that conditions action generation on delayed vision-language semantic states and explicit latency metadata, in addition to current observations, enabling policies to compensate for asynchronous reasoning. We further propose a latency-consistent training pipeline that injects reasoning inference delays during imitation learning and online reinforcement learning, aligning training with asynchronous deployment. To support realistic evaluation, we present DynaNav, a physics-accurate, photo-realistic simulation suite for language-guided navigation in dynamic environments. Extensive experiments in simulation and on a real robot show that TIC-VLA consistently outperforms prior VLA models while maintaining robust real-time control under multi-second reasoning latency. Project website: https://ucla-mobility.github.io/TIC-VLA/

World-Gymnast: Training Robots with Reinforcement Learning in a World Model 2026-02-02
Show

Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.

https...

https://world-gymnast.github.io/

MAIN-VLA: Modeling Abstraction of Intention and eNvironment for Vision-Language-Action Models 2026-02-02
Show

Despite significant progress in Visual-Language-Action (VLA), in highly complex and dynamic environments that involve real-time unpredictable interactions (such as 3D open worlds and large-scale PvP games), existing approaches remain inefficient at extracting action-critical signals from redundant sensor streams. To tackle this, we introduce MAIN-VLA, a framework that explicitly Models the Abstraction of Intention and eNvironment to ground decision-making in deep semantic alignment rather than superficial pattern matching. Specifically, our Intention Abstraction (IA) extracts verbose linguistic instructions and their associated reasoning into compact, explicit semantic primitives, while the Environment Semantics Abstraction (ESA) projects overwhelming visual streams into a structured, topological affordance representation. Furthermore, aligning these two abstract modalities induces an emergent attention-concentration effect, enabling a parameter-free token-pruning strategy that filters out perceptual redundancy without degrading performance. Extensive experiments in open-world Minecraft and large-scale PvP environments (Game for Peace and Valorant) demonstrate that MAIN-VLA sets a new state-of-the-art, which achieves superior decision quality, stronger generalization, and cutting-edge inference efficiency.

FD-VLA: Force-Distilled Vision-Language-Action Model for Contact-Rich Manipulation 2026-02-02
Show

Force sensing is a crucial modality for Vision-Language-Action (VLA) frameworks, as it enables fine-grained perception and dexterous manipulation in contact-rich tasks. We present Force-Distilled VLA (FD-VLA), a novel framework that integrates force awareness into contact-rich manipulation without relying on physical force sensors. The core of our approach is a Force Distillation Module (FDM), which distills force by mapping a learnable query token, conditioned on visual observations and robot states, into a predicted force token aligned with the latent representation of actual force signals. During inference, this distilled force token is injected into the pretrained VLM, enabling force-aware reasoning while preserving the integrity of its vision-language semantics. This design provides two key benefits: first, it allows practical deployment across a wide range of robots that lack expensive or fragile force-torque sensors, thereby reducing hardware cost and complexity; second, the FDM introduces an additional force-vision-state fusion prior to the VLM, which improves cross-modal alignment and enhances perception-action robustness in contact-rich scenarios. Surprisingly, our physical experiments show that the distilled force token outperforms direct sensor force measurements as well as other baselines, which highlights the effectiveness of this force-distilled VLA approach.

A Survey on Efficient Vision-Language-Action Models 2026-02-02
Show

Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.

28 pages, 8 figures
Concept-Based Dictionary Learning for Inference-Time Safety in Vision Language Action Models 2026-02-02
Show

Vision Language Action (VLA) models close the perception action loop by translating multimodal instructions into executable behaviors, but this very capability magnifies safety risks: jailbreaks that merely yield toxic text in LLMs can trigger unsafe physical actions in embodied systems. Existing defenses alignment, filtering, or prompt hardening intervene too late or at the wrong modality, leaving fused representations exploitable. We introduce a concept-based dictionary learning framework for inference-time safety control. By constructing sparse, interpretable dictionaries from hidden activations, our method identifies harmful concept directions and applies threshold-based interventions to suppress or block unsafe activations. Experiments on Libero-Harm, BadRobot, RoboPair, and IS-Bench show that our approach achieves state-of-the-art defense performance, cutting attack success rates by over 70% while maintaining task success. Crucially, the framework is plug-in and model-agnostic, requiring no retraining and integrating seamlessly with diverse VLAs. To our knowledge, this is the first inference-time concept-based safety method for embodied systems, advancing both interpretability and safe deployment of VLA models.

LaST$_{0}$: Latent Spatio-Temporal Chain-of-Thought for Robotic Vision-Language-Action Model 2026-02-02
Show

Vision-Language-Action (VLA) models have recently shown strong generalization, with some approaches seeking to explicitly generate linguistic reasoning traces or predict future observations prior to execution. However, explicit reasoning typically incurs non-negligible inference latency, which constrains the temporal resolution required for robotic manipulation. Moreover, such reasoning is confined to the linguistic space, imposing a representational bottleneck that struggles to faithfully capture ineffable physical attributes. To mitigate these limitations, we propose LaST$_0$, a framework that enables efficient reasoning before acting through a Latent Spatio-Temporal Chain-of-Thought (CoT), capturing fine-grained physical and robotic dynamics that are often difficult to verbalize. Specifically, we introduce a token-efficient latent CoT space that models future visual dynamics, 3D structural information, and robot proprioceptive states, and further extends these representations across time to enable temporally consistent implicit reasoning trajectories. Furthermore, LaST$_0$ adopts a dual-system architecture implemented via a Mixture-of-Transformers design, where a reasoning expert conducts low-frequency latent inference and an acting expert generates high-frequency actions conditioned on robotics-oriented latent representations. To facilitate coordination, LaST$_0$ is trained with heterogeneous operation frequencies, enabling adaptive switching during deployment. Across 10 real-world tasks spanning tabletop, mobile, and dexterous hand manipulation, LaST$_0$ improves mean success rates by 13%, 14% and 14% over prior SOTA VLA methods, respectively.

From Knowing to Doing Precisely: A General Self-Correction and Termination Framework for VLA models 2026-02-02
Show

While vision-language-action (VLA) models for embodied agents integrate perception, reasoning, and control, they remain constrained by two critical weaknesses: first, during grasping tasks, the action tokens generated by the language model often exhibit subtle spatial deviations from the target object, resulting in grasp failures; second, they lack the ability to reliably recognize task completion, which leads to redundant actions and frequent timeout errors. To address these challenges and enhance robustness, we propose a lightweight, training-free framework, VLA-SCT. This framework operates as a self-correcting control loop, combining data-driven action refinement with conditional logic for termination. Consequently, compared to baseline approaches, our method achieves consistent improvements across all datasets in the LIBERO benchmark, significantly increasing the success rate of fine manipulation tasks and ensuring accurate task completion, thereby promoting the deployment of more reliable VLA agents in complex, unstructured environments.

Accep...

Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)

Dichotomous Diffusion Policy Optimization 2026-02-01
Show

Diffusion-based policies have gained growing popularity in solving a wide range of decision-making tasks due to their superior expressiveness and controllable generation during inference. However, effectively training large diffusion policies using reinforcement learning (RL) remains challenging. Existing methods either suffer from unstable training due to directly maximizing value objectives, or face computational issues due to relying on crude Gaussian likelihood approximation, which requires a large amount of sufficiently small denoising steps. In this work, we propose DIPOLE (Dichotomous diffusion Policy improvement), a novel RL algorithm designed for stable and controllable diffusion policy optimization. We begin by revisiting the KL-regularized objective in RL, which offers a desirable weighted regression objective for diffusion policy extraction, but often struggles to balance greediness and stability. We then formulate a greedified policy regularization scheme, which naturally enables decomposing the optimal policy into a pair of stably learned dichotomous policies: one aims at reward maximization, and the other focuses on reward minimization. Under such a design, optimized actions can be generated by linearly combining the scores of dichotomous policies during inference, thereby enabling flexible control over the level of greediness.Evaluations in offline and offline-to-online RL settings on ExORL and OGBench demonstrate the effectiveness of our approach. We also use DIPOLE to train a large vision-language-action (VLA) model for end-to-end autonomous driving (AD) and evaluate it on the large-scale real-world AD benchmark NAVSIM, highlighting its potential for complex real-world applications.

Latent Reasoning VLA: Latent Thinking and Prediction for Vision-Language-Action Models 2026-02-01
Show

Vision-Language-Action (VLA) models benefit from chain-of-thought (CoT) reasoning, but existing approaches incur high inference overhead and rely on discrete reasoning representations that mismatch continuous perception and control. We propose Latent Reasoning VLA (\textbf{LaRA-VLA}), a unified VLA framework that internalizes multi-modal CoT reasoning into continuous latent representations for embodied action. LaRA-VLA performs unified reasoning and prediction in latent space, eliminating explicit CoT generation at inference time and enabling efficient, action-oriented control. To realize latent embodied reasoning, we introduce a curriculum-based training paradigm that progressively transitions from explicit textual and visual CoT supervision to latent reasoning, and finally adapts latent reasoning dynamics to condition action generation. We construct two structured CoT datasets and evaluate LaRA-VLA on both simulation benchmarks and long-horizon real-robot manipulation tasks. Experimental results show that LaRA-VLA consistently outperforms state-of-the-art VLA methods while reducing inference latency by up to 90% compared to explicit CoT-based approaches, demonstrating latent reasoning as an effective and efficient paradigm for real-time embodied control. Project Page: \href{https://loveju1y.github.io/Latent-Reasoning-VLA/}{LaRA-VLA Website}.

Improving Robustness of Vision-Language-Action Models by Restoring Corrupted Visual Inputs 2026-02-01
Show

Vision-Language-Action (VLA) models have emerged as a dominant paradigm for generalist robotic manipulation, unifying perception and control within a single end-to-end architecture. However, despite their success in controlled environments, reliable real-world deployment is severely hindered by their fragility to visual disturbances. While existing literature extensively addresses physical occlusions caused by scene geometry, a critical mode remains largely unexplored: image corruptions. These sensor-level artifacts, ranging from electronic noise and dead pixels to lens contaminants, directly compromise the integrity of the visual signal prior to interpretation. In this work, we quantify this vulnerability, demonstrating that state-of-the-art VLAs such as $π_{0.5}$ and SmolVLA, suffer catastrophic performance degradation, dropping from 90% success rates to as low as 2%, under common signal artifacts. To mitigate this, we introduce the Corruption Restoration Transformer (CRT), a plug-and-play and model-agnostic vision transformer designed to immunize VLA models against sensor disturbances. Leveraging an adversarial training objective, CRT restores clean observations from corrupted inputs without requiring computationally expensive fine-tuning of the underlying model. Extensive experiments across the LIBERO and Meta-World benchmarks demonstrate that CRT effectively recovers lost performance, enabling VLAs to maintain near-baseline success rates, even under severe visual corruption.

StreamVLA: Breaking the Reason-Act Cycle via Completion-State Gating 2026-02-01
Show

Long-horizon robotic manipulation requires bridging the gap between high-level planning (System 2) and low-level control (System 1). Current Vision-Language-Action (VLA) models often entangle these processes, performing redundant multimodal reasoning at every timestep, which leads to high latency and goal instability. To address this, we present StreamVLA, a dual-system architecture that unifies textual task decomposition, visual goal imagination, and continuous action generation within a single parameter-efficient backbone. We introduce a "Lock-and-Gated" mechanism to intelligently modulate computation: only when a sub-task transition is detected, the model triggers slow thinking to generate a textual instruction and imagines the specific visual completion state, rather than generic future frames. Crucially, this completion state serves as a time-invariant goal anchor, making the policy robust to execution speed variations. During steady execution, these high-level intents are locked to condition a Flow Matching action head, allowing the model to bypass expensive autoregressive decoding for 72% of timesteps. This hierarchical abstraction ensures sub-goal focus while significantly reducing inference latency. Extensive evaluations demonstrate that StreamVLA achieves state-of-the-art performance, with a 98.5% success rate on the LIBERO benchmark and robust recovery in real-world interference scenarios, achieving a 48% reduction in latency compared to full-reasoning baselines.

A Systematic Study of Data Modalities and Strategies for Co-training Large Behavior Models for Robot Manipulation 2026-02-01
Show

Large behavior models have shown strong dexterous manipulation capabilities by extending imitation learning to large-scale training on multi-task robot data, yet their generalization remains limited by the insufficient robot data coverage. To expand this coverage without costly additional data collection, recent work relies on co-training: jointly learning from target robot data and heterogeneous data modalities. However, how different co-training data modalities and strategies affect policy performance remains poorly understood. We present a large-scale empirical study examining five co-training data modalities: standard vision-language data, dense language annotations for robot trajectories, cross-embodiment robot data, human videos, and discrete robot action tokens across single- and multi-phase training strategies. Our study leverages 4,000 hours of robot and human manipulation data and 50M vision-language samples to train vision-language-action policies. We evaluate 89 policies over 58,000 simulation rollouts and 2,835 real-world rollouts. Our results show that co-training with forms of vision-language and cross-embodiment robot data substantially improves generalization to distribution shifts, unseen tasks, and language following, while discrete action token variants yield no significant benefits. Combining effective modalities produces cumulative gains and enables rapid adaptation to unseen long-horizon dexterous tasks via fine-tuning. Training exclusively on robot data degrades the visiolinguistic understanding of the vision-language model backbone, while co-training with effective modalities restores these capabilities. Explicitly conditioning action generation on chain-of-thought traces learned from co-training data does not improve performance in our simulation benchmark. Together, these results provide practical guidance for building scalable generalist robot policies.

Green-VLA: Staged Vision-Language-Action Model for Generalist Robots 2026-01-31
Show

We introduce Green-VLA, a staged Vision-Language-Action (VLA) framework for real-world deployment on the Green humanoid robot while maintaining generalization across diverse embodiments. Green-VLA follows a five stage curriculum: (L0) foundational VLMs, (L1) multimodal grounding, (R0) multi-embodiment pretraining, (R1) embodiment-specific adaptation, and (R2) reinforcement-learning (RL) policy alignment. We couple a scalable data-processing pipeline (3,000 hours of demonstrations) with temporal alignment and quality filtering, and use a unified, embodiment-aware action interface enabling a single policy to control humanoids, mobile manipulators, and fixed-base arms. At inference, the VLA controller is enhanced with episode-progress prediction, out-of-distribution detection, and joint-prediction-based guidance to improve safety and precise target selection. Experiments on Simpler BRIDGE WidowX and CALVIN ABC-D, as well as real-robot evaluations, show strong generalization and performance gains from RL alignment in success rate, robustness, and long-horizon efficiency.

22 pages, 14 figures
Any3D-VLA: Enhancing VLA Robustness via Diverse Point Clouds 2026-01-31
Show

Existing Vision-Language-Action (VLA) models typically take 2D images as visual input, which limits their spatial understanding in complex scenes. How can we incorporate 3D information to enhance VLA capabilities? We conduct a pilot study across different observation spaces and visual representations. The results show that explicitly lifting visual input into point clouds yields representations that better complement their corresponding 2D representations. To address the challenges of (1) scarce 3D data and (2) the domain gap induced by cross-environment differences and depth-scale biases, we propose Any3D-VLA. It unifies the simulator, sensor, and model-estimated point clouds within a training pipeline, constructs diverse inputs, and learns domain-agnostic 3D representations that are fused with the corresponding 2D representations. Simulation and real-world experiments demonstrate Any3D-VLA's advantages in improving performance and mitigating the domain gap. Our project homepage is available at https://xianzhefan.github.io/Any3D-VLA.github.io.

Environment-Aware Adaptive Pruning with Interleaved Inference Orchestration for Vision-Language-Action Models 2026-01-31
Show

While Vision-Language-Action (VLA) models hold promise in embodied intelligence, their large parameter counts lead to substantial inference latency that hinders real-time manipulation, motivating parameter sparsification. However, as the environment evolves during VLA execution, the optimal sparsity patterns change accordingly. Static pruning lacks the adaptability required for environment dynamics, whereas fixed-interval dynamic layer pruning suffers from coarse granularity and high retraining overheads. To bridge this gap, we propose EcoVLA, a training-free, plug-and-play adaptive pruning framework that supports orthogonal combination with existing VLA acceleration methods. EcoVLA comprises two components: Environment-aware Adaptive Pruning (EAP) and Interleaved Inference Orchestration ($I^2O$). EAP is a lightweight adaptive channel pruning method that incorporates the temporal consistency of the physical environment to update sparsity patterns. $I^2O$ leverages the FLOPs bubbles inherent in VLA inference to schedule the pruning method in parallel, ensuring negligible impact on latency. Evaluated on diverse VLA models and benchmarks, EcoVLA delivers state-of-the-art performance, achieving up to 1.60$\times$ speedup with only a 0.4% drop in success rate, and further reaches 2.18$\times$ speedup with only a 0.5% degradation when combined with token pruning. We further validate the effectiveness of EcoVLA on real-world robots.

12 pages, 7 figures
SA-VLA: Spatially-Aware Flow-Matching for Vision-Language-Action Reinforcement Learning 2026-01-31
Show

Vision-Language-Action (VLA) models exhibit strong generalization in robotic manipulation, yet reinforcement learning (RL) fine-tuning often degrades robustness under spatial distribution shifts. For flow-matching VLA policies, this degradation is closely associated with the erosion of spatial inductive bias during RL adaptation, as sparse rewards and spatially agnostic exploration increasingly favor short-horizon visual cues. To address this issue, we propose \textbf{SA-VLA}, a spatially-aware RL adaptation framework that preserves spatial grounding during policy optimization by aligning representation learning, reward design, and exploration with task geometry. SA-VLA fuses implicit spatial representations with visual tokens, provides dense rewards that reflect geometric progress, and employs \textbf{SCAN}, a spatially-conditioned annealed exploration strategy tailored to flow-matching dynamics. Across challenging multi-object and cluttered manipulation benchmarks, SA-VLA enables stable RL fine-tuning and improves zero-shot spatial generalization, yielding more robust and transferable behaviors. Code and project page are available at https://xupan.top/Projects/savla.

Version 1
Learning to Accelerate Vision-Language-Action Models through Adaptive Visual Token Caching 2026-01-31
Show

Vision-Language-Action (VLA) models have demonstrated remarkable generalization capabilities in robotic manipulation tasks, yet their substantial computational overhead remains a critical obstacle to real-world deployment. Improving inference efficiency is therefore essential for practical robotic applications. Existing acceleration methods often rely on heuristic or static strategies--such as rule-based token caching or pruning--that are decoupled from task objectives and fail to adapt to dynamic scene changes. In this work, we reformulate inference acceleration as a learnable policy optimization problem and propose a novel framework that integrates a dynamic, task-aware decision-making process directly into the VLA model. At its core are two lightweight, cooperative modules: a Cached Token Selector, which determines which tokens should be reused, and a Cache Ratio Predictor, which controls how many tokens to reuse. Training these modules is non-trivial due to their discrete decisions. We address this by adopting a differentiable relaxation that allows gradient-based end-to-end optimization. Extensive experiments on the LIBERO and SIMPLER benchmarks, as well as real-robot evaluations, show that our method achieves a 1.76x wall-clock inference speedup while simultaneously improving the average success rate by 1.9 percentage points (from 75.0% to 76.9%) on LIBERO and by 5.0 percentage points on real-world tasks, significantly outperforming existing baselines. This work highlights the potential of learning task-aware computational allocation policies, paving the way for VLA models that are both powerful and efficient.

LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries 2026-01-31
Show

Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.

ConLA: Contrastive Latent Action Learning from Human Videos for Robotic Manipulation 2026-01-31
Show

Vision-Language-Action (VLA) models achieve preliminary generalization through pretraining on large scale robot teleoperation datasets. However, acquiring datasets that comprehensively cover diverse tasks and environments is extremely costly and difficult to scale. In contrast, human demonstration videos offer a rich and scalable source of diverse scenes and manipulation behaviors, yet their lack of explicit action supervision hinders direct utilization. Prior work leverages VQ-VAE based frameworks to learn latent actions from human videos in an unsupervised manner. Nevertheless, since the training objective primarily focuses on reconstructing visual appearances rather than capturing inter-frame dynamics, the learned representations tend to rely on spurious visual cues, leading to shortcut learning and entangled latent representations that hinder transferability. To address this, we propose ConLA, an unsupervised pretraining framework for learning robotic policies from human videos. ConLA introduces a contrastive disentanglement mechanism that leverages action category priors and temporal cues to isolate motion dynamics from visual content, effectively mitigating shortcut learning. Extensive experiments show that ConLA achieves strong performance across diverse benchmarks. Notably, by pretraining solely on human videos, our method for the first time surpasses the performance obtained with real robot trajectory pretraining, highlighting its ability to extract pure and semantically consistent latent action representations for scalable robot learning.

Inject Once Survive Later: Backdooring Vision-Language-Action Models to Persist Through Downstream Fine-tuning 2026-01-31
Show

Vision-Language-Action (VLA) models have become foundational to modern embodied AI systems. By integrating visual perception, language understanding, and action planning, they enable general-purpose task execution across diverse environments. Despite their importance, the security of VLA models remains underexplored -- particularly in the context of backdoor attacks, which pose realistic threats in physical-world deployments. While recent methods attempt to inject backdoors into VLA models, these backdoors are easily erased during downstream adaptation, as user-side fine-tuning with clean data significantly alters model parameters, rendering them impractical for real-world applications. To address these challenges, we propose INFUSE (INjection into Fine-tUne-inSensitive modulEs), the first backdoor attack framework for VLA base models that remains effective even with arbitrary user fine-tuning. INFUSE begins by analyzing parameter sensitivity across diverse fine-tuning scenarios to identify modules that remain largely unchanged -- the fine-tune-insensitive modules. It then injects backdoors into these stable modules while freezing the rest, ensuring malicious behavior persists after extensive user fine-tuning. Comprehensive experiments across multiple VLA architectures demonstrate INFUSE's effectiveness. After user-side fine-tuning, INFUSE maintains mean attack success rates of 91.0% on simulation environments and 79.8% on real-world robot tasks, substantially surpassing BadVLA (38.8% and 36.6%, respectively), while preserving clean-task performance comparable to standard models. These results uncover a critical threat: backdoors implanted before distribution can persist through fine-tuning and remain effective at deployment.

TaF-VLA: Tactile-Force Alignment in Vision-Language-Action Models for Force-aware Manipulation 2026-01-30
Show

Vision-Language-Action (VLA) models have recently emerged as powerful generalists for robotic manipulation. However, due to their predominant reliance on visual modalities, they fundamentally lack the physical intuition required for contact-rich tasks that require precise force regulation and physical reasoning. Existing attempts to incorporate vision-based tactile sensing into VLA models typically treat tactile inputs as auxiliary visual textures, thereby overlooking the underlying correlation between surface deformation and interaction dynamics. To bridge this gap, we propose a paradigm shift from tactile-vision alignment to tactile-force alignment. Here, we introduce TaF-VLA, a framework that explicitly grounds high-dimensional tactile observations in physical interaction forces. To facilitate this, we develop an automated tactile-force data acquisition device and curate the TaF-Dataset, comprising over 10 million synchronized tactile observations, 6-axis force/torque, and matrix force map. To align sequential tactile observations with interaction forces, the central component of our approach is the Tactile-Force Adapter (TaF-Adapter), a tactile sensor encoder that extracts discretized latent information for encoding tactile observations. This mechanism ensures that the learned representations capture history-dependent, noise-insensitive physical dynamics rather than static visual textures. Finally, we integrate this force-aligned encoder into a VLA backbone. Extensive real-world experiments demonstrate that TaF-VLA policy significantly outperforms state-of-the-art tactile-vision-aligned and vision-only baselines on contact-rich tasks, verifying its ability to achieve robust, force-aware manipulation through cross-modal physical reasoning.

17pages,9fig
MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation 2026-01-30
Show

Temporal context is essential for robotic manipulation because such tasks are inherently non-Markovian, yet mainstream VLA models typically overlook it and struggle with long-horizon, temporally dependent tasks. Cognitive science suggests that humans rely on working memory to buffer short-lived representations for immediate control, while the hippocampal system preserves verbatim episodic details and semantic gist of past experience for long-term memory. Inspired by these mechanisms, we propose MemoryVLA, a Cognition-Memory-Action framework for long-horizon robotic manipulation. A pretrained VLM encodes the observation into perceptual and cognitive tokens that form working memory, while a Perceptual-Cognitive Memory Bank stores low-level details and high-level semantics consolidated from it. Working memory retrieves decision-relevant entries from the bank, adaptively fuses them with current tokens, and updates the bank by merging redundancies. Using these tokens, a memory-conditioned diffusion action expert yields temporally aware action sequences. We evaluate MemoryVLA on 150+ simulation and real-world tasks across three robots. On SimplerEnv-Bridge, Fractal, LIBERO-5 suites and Mikasa-Robo, it achieves 71.9%, 72.7%, 96.5%, and 41.2% success rates, respectively, all outperforming state-of-the-art baselines CogACT and pi-0, with a notable +14.6 gain on Bridge and +11.8 gain on Mikasa-Robo. On 12 real-world tasks spanning general skills and long-horizon temporal dependencies, MemoryVLA achieves 84.0% success rate, with long-horizon tasks showing a +26 improvement over state-of-the-art baseline. Project Page: https://shihao1895.github.io/MemoryVLA

ICLR ...

ICLR 2026

TwinBrainVLA: Unleashing the Potential of Generalist VLMs for Embodied Tasks via Asymmetric Mixture-of-Transformers 2026-01-30
Show

The fundamental premise of Vision-Language-Action (VLA) models is to harness the extensive general capabilities of pre-trained Vision-Language Models (VLMs) for generalized embodied intelligence. However, standard robotic fine-tuning inevitably disrupts the pre-trained feature space, leading to "catastrophic forgetting" that compromises the general visual understanding we aim to leverage. To effectively utilize the uncorrupted general capabilities of VLMs for robotic tasks, we propose TwinBrainVLA, which coordinates two isomorphic VLM pathways: a frozen generalist (also called "Left Brain") and a trainable specialist (also called "Right Brain"). Our architecture utilizes a Asymmetric Mixture-of-Transformers (AsyMoT) mechanism, enabling the Right Brain to dynamically query and fuse intact semantic knowledge from the Left Brain with proprioceptive states. This fused representation conditions a flow-matching action expert for precise continuous control. Empirical results on SimplerEnv and RoboCasa benchmarks demonstrate that by explicitly retaining general capabilities, TwinBrainVLA achieves substantial performance gains over baseline models in complex manipulation tasks.

GitHu...

GitHub: https://github.com/ZGC-EmbodyAI/TwinBrainVLA

Vision-Language Models Unlock Task-Centric Latent Actions 2026-01-30
Show

Latent Action Models (LAMs) have rapidly gained traction as an important component in the pre-training pipelines of leading Vision-Language-Action models. However, they fail when observations contain action-correlated distractors, often encoding noise instead of meaningful latent actions. Humans, on the other hand, can effortlessly distinguish task-relevant motions from irrelevant details in any video given only a brief task description. In this work, we propose to utilize the common-sense reasoning abilities of Vision-Language Models (VLMs) to provide promptable representations, effectively separating controllable changes from the noise in unsupervised way. We use these representations as targets during LAM training and benchmark a wide variety of popular VLMs, revealing substantial variation in the quality of promptable representations as well as their robustness to different prompts and hyperparameters. Interestingly, we find that more recent VLMs may perform worse than older ones. Finally, we show that simply asking VLMs to ignore distractors can substantially improve latent action quality, yielding up to a six-fold increase in downstream success rates on Distracting MetaWorld.

Preprint
CARE: Multi-Task Pretraining for Latent Continuous Action Representation in Robot Control 2026-01-30
Show

Recent advances in Vision-Language-Action (VLA) models have shown promise for robot control, but their dependence on action supervision limits scalability and generalization. To address this challenge, we introduce CARE, a novel framework designed to train VLA models for robotic task execution. Unlike existing methods that depend on action annotations during pretraining, CARE eliminates the need for explicit action labels by leveraging only video-text pairs. These weakly aligned data sources enable the model to learn continuous latent action representations through a newly designed multi-task pretraining objective. During fine-tuning, a small set of labeled data is used to train the action head for control. Experimental results across various simulation tasks demonstrate CARE's superior success rate, semantic interpretability, and ability to avoid shortcut learning. These results underscore CARE's scalability, interpretability, and effectiveness in robotic control with weak supervision.

Accep...

Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)

Vision-Language-Action (VLA) Models: Concepts, Progress, Applications and Challenges 2026-01-29
Show

Vision-Language-Action (VLA) models mark a transformative advancement in artificial intelligence, aiming to unify perception, natural language understanding, and embodied action within a single computational framework. This foundational review presents a comprehensive synthesis of recent advancements in Vision-Language-Action models, systematically organized across five thematic pillars that structure the landscape of this rapidly evolving field. We begin by establishing the conceptual foundations of VLA systems, tracing their evolution from cross-modal learning architectures to generalist agents that tightly integrate vision-language models (VLMs), action planners, and hierarchical controllers. Our methodology adopts a rigorous literature review framework, covering over 80 VLA models published in the past three years. Key progress areas include architectural innovations, efficient training strategies, and real-time inference accelerations. We explore diverse application domains such as autonomous vehicles, medical and industrial robotics, precision agriculture, humanoid robotics, and augmented reality. We analyzed challenges and propose solutions including agentic adaptation and cross-embodiment planning. Furthermore, we outline a forward-looking roadmap where VLA models, VLMs, and agentic AI converge to strengthen socially aligned, adaptive, and general-purpose embodied agents. This work, is expected to serve as a foundational reference for advancing intelligent, real-world robotics and artificial general intelligence. The project repository is available on GitHub as https://github.com/Applied-AI-Research-Lab/Vision-Language-Action-Models-Concepts-Progress-Applications-and-Challenges. [Index Terms: Vision Language Action, VLA, Vision Language Models, VLMs, Action Tokenization, NLP]

DynamicVLA: A Vision-Language-Action Model for Dynamic Object Manipulation 2026-01-29
Show

Manipulating dynamic objects remains an open challenge for Vision-Language-Action (VLA) models, which, despite strong generalization in static manipulation, struggle in dynamic scenarios requiring rapid perception, temporal anticipation, and continuous control. We present DynamicVLA, a framework for dynamic object manipulation that integrates temporal reasoning and closed-loop adaptation through three key designs: 1) a compact 0.4B VLA using a convolutional vision encoder for spatially efficient, structurally faithful encoding, enabling fast multimodal inference; 2) Continuous Inference, enabling overlapping reasoning and execution for lower latency and timely adaptation to object motion; and 3) Latent-aware Action Streaming, which bridges the perception-execution gap by enforcing temporally aligned action execution. To fill the missing foundation of dynamic manipulation data, we introduce the Dynamic Object Manipulation (DOM) benchmark, built from scratch with an auto data collection pipeline that efficiently gathers 200K synthetic episodes across 2.8K scenes and 206 objects, and enables fast collection of 2K real-world episodes without teleoperation. Extensive evaluations demonstrate remarkable improvements in response speed, perception, and generalization, positioning DynamicVLA as a unified framework for general dynamic object manipulation across embodiments.

Proje...

Project Page: https://www.infinitescript.com/project/dynamic-vla/ GitHub: https://github.com/hzxie/DynamicVLA

MoE-ACT: Improving Surgical Imitation Learning Policies through Supervised Mixture-of-Experts 2026-01-29
Show

Imitation learning has achieved remarkable success in robotic manipulation, yet its application to surgical robotics remains challenging due to data scarcity, constrained workspaces, and the need for an exceptional level of safety and predictability. We present a supervised Mixture-of-Experts (MoE) architecture designed for phase-structured surgical manipulation tasks, which can be added on top of any autonomous policy. Unlike prior surgical robot learning approaches that rely on multi-camera setups or thousands of demonstrations, we show that a lightweight action decoder policy like Action Chunking Transformer (ACT) can learn complex, long-horizon manipulation from less than 150 demonstrations using solely stereo endoscopic images, when equipped with our architecture. We evaluate our approach on the collaborative surgical task of bowel grasping and retraction, where a robot assistant interprets visual cues from a human surgeon, executes targeted grasping on deformable tissue, and performs sustained retraction. We benchmark our method against state-of-the-art Vision-Language-Action (VLA) models and the standard ACT baseline. Our results show that generalist VLAs fail to acquire the task entirely, even under standard in-distribution conditions. Furthermore, while standard ACT achieves moderate success in-distribution, adopting a supervised MoE architecture significantly boosts its performance, yielding higher success rates in-distribution and demonstrating superior robustness in out-of-distribution scenarios, including novel grasp locations, reduced illumination, and partial occlusions. Notably, it generalizes to unseen testing viewpoints and also transfers zero-shot to ex vivo porcine tissue without additional training, offering a promising pathway toward in vivo deployment. To support this, we present qualitative preliminary results of policy roll-outs during in vivo porcine surgery.

$π_\texttt{RL}$: Online RL Fine-tuning for Flow-based Vision-Language-Action Models 2026-01-29
Show

Vision-Language-Action (VLA) models enable robots to understand and perform complex tasks from multimodal input. Although recent work explores using reinforcement learning (RL) to automate the laborious data collection process in scaling supervised fine-tuning (SFT), applying RL to large-scale flow-based VLAs (\eg, $π_0$, $π_{0.5}$) remains challenging due to intractable action log-likelihoods raised from flow matching. We address this challenge with $π_{\texttt{RL}}$, featuring two technical approaches: (1) \textbf{Flow-Noise} models the denoising process as a discrete-time MDP with a learnable noise network for exact log-likelihood computation. (2) \textbf{Flow-SDE} integrates denoising with agent-environment interaction, formulating a two-layer MDP that employs ODE-to-SDE conversion for efficient RL exploration. We evaluate $π_{\texttt{RL}}$ across various benchmarks, with experiments demonstrating that RL yields significant performance improvements in both in-distribution and out-of-distribution settings.

Bring My Cup! Personalizing Vision-Language-Action Models with Visual Attentive Prompting 2026-01-29
Show

While Vision-Language-Action (VLA) models generalize well to generic instructions, they struggle with personalized commands such as "bring my cup," where the robot must act on one specific instance among visually similar objects. We study this setting of manipulating personal objects, in which a VLA must identify and control a user-specific object unseen during training using only a few reference images. To address this challenge, we propose Visual Attentive Prompting (VAP), a simple-yet-effective training-free perceptual adapter that equips frozen VLAs with top-down selective attention. VAP treats the reference images as a non-parametric visual memory, grounds the personal object in the scene through open-vocabulary detection and embedding-based matching, and then injects this grounding as a visual prompt by highlighting the object and rewriting the instruction. We construct two simulation benchmarks, Personalized-SIMPLER and Personalized-VLABench, and a real-world tabletop benchmark to evaluate personalized manipulation across multiple robots and tasks. Experiments show that VAP consistently outperforms generic policies and token-learning baselines in both success rate and correct-object manipulation, helping to bridge the gap between semantic understanding and instance-level control.

Proje...

Project page with videos and code: https://vap-project.github.io/

IROS: A Dual-Process Architecture for Real-Time VLM-Based Indoor Navigation 2026-01-29
Show

Indoor mobile robot navigation requires fast responsiveness and robust semantic understanding, yet existing methods struggle to provide both. Classical geometric approaches such as SLAM offer reliable localization but depend on detailed maps and cannot interpret human-targeted cues (e.g., signs, room numbers) essential for indoor reasoning. Vision-Language-Action (VLA) models introduce semantic grounding but remain strictly reactive, basing decisions only on visible frames and failing to anticipate unseen intersections or reason about distant textual cues. Vision-Language Models (VLMs) provide richer contextual inference but suffer from high computational latency, making them unsuitable for real-time operation on embedded platforms. In this work, we present IROS, a real-time navigation framework that combines VLM-level contextual reasoning with the efficiency of lightweight perceptual modules on low-cost, on-device hardware. Inspired by Dual Process Theory, IROS separates fast reflexive decisions (System One) from slow deliberative reasoning (System Two), invoking the VLM only when necessary. Furthermore, by augmenting compact VLMs with spatial and textual cues, IROS delivers robust, human-like navigation with minimal latency. Across five real-world buildings, IROS improves decision accuracy and reduces latency by 66% compared to continuous VLM-based navigation.

Listen, Look, Drive: Coupling Audio Instructions for User-aware VLA-based Autonomous Driving 2026-01-29
Show

Vision Language Action (VLA) models promise an open-vocabulary interface that can translate perceptual ambiguity into semantically grounded driving decisions, yet they still treat language as a static prior fixed at inference time. As a result, the model must infer continuously shifting objectives from pixels alone, yielding delayed or overly conservative maneuvers. We argue that effective VLAs for autonomous driving need an online channel in which users can influence driving with specific intentions. To this end, we present EchoVLA, a user-aware VLA that couples camera streams with in situ audio instructions. We augment the nuScenes dataset with temporally aligned, intent-specific speech commands generated by converting ego-motion descriptions into synthetic audios. Further, we compose emotional speech-trajectory pairs into a multimodal Chain-of-Thought (CoT) for fine-tuning a Multimodal Large Model (MLM) based on Qwen2.5-Omni. Specifically, we synthesize the audio-augmented dataset with different emotion types paired with corresponding driving behaviors, leveraging the emotional cues embedded in tone, pitch, and speech tempo to reflect varying user states, such as urgent or hesitant intentions, thus enabling our EchoVLA to interpret not only the semantic content but also the emotional context of audio commands for more nuanced and emotionally adaptive driving behavior. In open-loop benchmarks, our approach reduces the average L2 error by $59.4%$ and the collision rate by $74.4%$ compared to the baseline of vision-only perception. More experiments on nuScenes dataset validate that EchoVLA not only steers the trajectory through audio instructions, but also modulates driving behavior in response to the emotions detected in the user's speech.

Accepted by IV
Unifying Perception and Action: A Hybrid-Modality Pipeline with Implicit Visual Chain-of-Thought for Robotic Action Generation 2026-01-29
Show

Vision-Language-Action (VLA) models built upon Chain-of-Thought (CoT) have achieved remarkable success in advancing general-purpose robotic agents, owing to its significant perceptual comprehension. Recently, since text-only CoT struggles to adequately capture scene details in complex spatial environments, a highly promising strategy involves leveraging visual priors to guide robotic action generation. Nevertheless, these strategies face two inherent challenges: (i) a modality gap between visual observations and low-level actions, and (ii) unstable training due to competing objectives between visual prediction and action generation. To address these challenges, we propose a Vision-Integrated Trajectory Alignment (VITA) framework that learns a shared discrete latent space for vision and action, enabling joint modeling of perception and motor control. VITA introduces a implicit visual CoT: autoregressively generated tokens is simultaneously decoded into future frames predictions and robot actions, thereby internalizing visual dynamics as an inductive bias for motion planning. Extensive experiments on simulated and real-world environments demonstrate state-of-the-art performance. VITA improves 14.5%, 9.6% and 12.1% over existing baselines on CALVIN, LIBERO and SimplerEnv. Furthermore, VITA attains an average success rate of 80.5% across six real-world tasks, demonstrating its potential as a generalist robotic manipulation model.

Parallels Between VLA Model Post-Training and Human Motor Learning: Progress, Challenges, and Trends 2026-01-29
Show

Vision-language-action (VLA) models extend vision-language models (VLM) by integrating action generation modules for robotic manipulation. Leveraging the strengths of VLM in vision perception and instruction understanding, VLA models exhibit promising generalization across diverse manipulation tasks. However, applications demanding high precision and accuracy reveal performance gaps without further adaptation. Evidence from multiple domains highlights the critical role of post-training to align foundational models with downstream applications, spurring extensive research on post-training VLA models. VLA model post-training aims to enhance an embodiment's ability to interact with the environment for the specified tasks. This perspective aligns with Newell's constraints-led theory of skill acquisition, which posits that motor behavior arises from interactions among task, environmental, and organismic (embodiment) constraints. Accordingly, this survey structures post-training methods into four categories: (i) enhancing environmental perception, (ii) improving embodiment awareness, (iii) deepening task comprehension, and (iv) multi-component integration. Experimental results on standard benchmarks are synthesized to distill actionable guidelines. Finally, open challenges and emerging trends are outlined, relating insights from human learning to prospective methods for VLA post-training. This work delivers both a comprehensive overview of current VLA model post-training methods from a human motor learning perspective and practical insights for VLA model development. Project website: https://github.com/AoqunJin/Awesome-VLA-Post-Training.

HMVLA: Hyperbolic Multimodal Fusion for Vision-Language-Action Models 2026-01-28
Show

Vision Language Action (VLA) models have recently shown great potential in bridging multimodal perception with robotic control. However, existing methods often rely on direct fine-tuning of pre-trained Vision-Language Models (VLMs), feeding semantic and visual features directly into a policy network without fully addressing the unique semantic alignment challenges in the VLA domain. In this paper, we propose HMVLA, a novel VLA framework that exploits the inherent hierarchical structures in vision and language for comprehensive semantic alignment. Unlike traditional methods that perform alignment in Euclidean space, our HMVLA embeds multimodal features in hyperbolic space, enabling more effective modeling of the hierarchical relationships present in image text data. Furthermore, we introduce a sparsely gated Mixture of Experts (MoE) mechanism tailored for semantic alignment, which enhances multimodal comprehension between images and text while improving efficiency. Extensive experiments demonstrate that HMVLA surpasses baseline methods in both accuracy and generalization. In addition, we validate its robustness by reconstructing datasets to further test cross domain adaptability.

5 pag...

5 pages,5 figures,ICASSP

Demonstration-Free Robotic Control via LLM Agents 2026-01-28
Show

Robotic manipulation has increasingly adopted vision-language-action (VLA) models, which achieve strong performance but typically require task-specific demonstrations and fine-tuning, and often generalize poorly under domain shift. We investigate whether general-purpose large language model (LLM) agent frameworks, originally developed for software engineering, can serve as an alternative control paradigm for embodied manipulation. We introduce FAEA (Frontier Agent as Embodied Agent), which applies an LLM agent framework directly to embodied manipulation without modification. Using the same iterative reasoning that enables software agents to debug code, FAEA enables embodied agents to reason through manipulation strategies. We evaluate an unmodified frontier agent, Claude Agent SDK, across the LIBERO, ManiSkill3, and MetaWorld benchmarks. With privileged environment state access, FAEA achieves success rates of 84.9%, 85.7%, and 96%, respectively. This level of task success approaches that of VLA models trained with less than 100 demonstrations per task, without requiring demonstrations or fine-tuning. With one round of human feedback as an optional optimization, performance increases to 88.2% on LIBERO. This demonstration-free capability has immediate practical value: FAEA can autonomously explore novel scenarios in simulation and generate successful trajectories for training data augmentation in embodied learning. Our results indicate that general-purpose agents are sufficient for a class of manipulation tasks dominated by deliberative, task-level planning. This opens a path for robotics systems to leverage actively maintained agent infrastructure and benefit directly from ongoing advances in frontier models. Code is available at https://github.com/robiemusketeer/faea-sim

Shallow-π: Knowledge Distillation for Flow-based VLAs 2026-01-28
Show

The growing demand for real-time robotic deployment necessitates fast and on-device inference for vision-language-action (VLA) models. Within the VLA literature, efficiency has been extensively studied at the token level, such as visual token pruning. In contrast, systematic transformer layer reduction has received limited attention and, to the best of our knowledge, has not been explored for flow-based VLA models under knowledge distillation. In this work, we propose Shallow-pi, a principled knowledge distillation framework that aggressively reduces the transformer depth of both the VLM backbone and the flow-based action head, compressing the model from 18 to 6 layers. Shallow-pi achieves over two times faster inference with less than one percent absolute drop in success rate on standard manipulation benchmarks, establishing state-of-the-art performance among reduced VLA models. Crucially, we validate our approach through industrial-scale real-world experiments on Jetson Orin and Jetson Thor across multiple robot platforms, including humanoid systems, in complex and dynamic manipulation scenarios.

Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review 2026-01-28
Show

Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.

v2: E...

v2: Expanded systematic review; resubmitted to Robotics

MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption 2026-01-28
Show

Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, incur high compute costs, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.

AC^2-VLA: Action-Context-Aware Adaptive Computation in Vision-Language-Action Models for Efficient Robotic Manipulation 2026-01-27
Show

Vision-Language-Action (VLA) models have demonstrated strong performance in robotic manipulation, yet their closed-loop deployment is hindered by the high latency and compute cost of repeatedly running large vision-language backbones at every timestep. We observe that VLA inference exhibits structured redundancies across temporal, spatial, and depth dimensions, and that most existing efficiency methods ignore action context, despite its central role in embodied tasks. To address this gap, we propose Action-Context-aware Adaptive Computation for VLA models (AC^2-VLA), a unified framework that conditions computation on current visual observations, language instructions, and previous action states. Based on this action-centric context, AC^2-VLA adaptively performs cognition reuse across timesteps, token pruning, and selective execution of model components within a unified mechanism. To train the adaptive policy, we introduce an action-guided self-distillation scheme that preserves the behavior of the dense VLA policy while enabling structured sparsification that transfers across tasks and settings. Extensive experiments on robotic manipulation benchmarks show that AC^2-VLA achieves up to a 1.79\times speedup while reducing FLOPs to 29.4% of the dense baseline, with comparable task success.

Vlaser: Vision-Language-Action Model with Synergistic Embodied Reasoning 2026-01-27
Show

While significant research has focused on developing embodied reasoning capabilities using Vision-Language Models (VLMs) or integrating advanced VLMs into Vision-Language-Action (VLA) models for end-to-end robot control, few studies directly address the critical gap between upstream VLM-based reasoning and downstream VLA policy learning. In this work, we take an initial step toward bridging embodied reasoning with VLA policy learning by introducing Vlaser - a Vision-Language-Action Model with synergistic embodied reasoning capability, which is a foundational vision-language model designed to integrate high-level reasoning with low-level control for embodied agents. Built upon the high-quality Vlaser-6M dataset, Vlaser achieves state-of-the-art performance across a range of embodied reasoning benchmarks - including spatial reasoning, embodied grounding, embodied QA, and task planning. Furthermore, we systematically examine how different VLM initializations affect supervised VLA fine-tuning, offering novel insights into mitigating the domain shift between internet-scale pre-training data and embodied-specific policy learning data. Based on these insights, our approach achieves state-of-the-art results on the WidowX benchmark and competitive performance on the Google Robot benchmark.

Trustworthy Evaluation of Robotic Manipulation: A New Benchmark and AutoEval Methods 2026-01-26
Show

Driven by the rapid evolution of Vision-Action and Vision-Language-Action models, imitation learning has significantly advanced robotic manipulation capabilities. However, evaluation methodologies have lagged behind, hindering the establishment of Trustworthy Evaluation for these behaviors. Current paradigms rely on binary success rates, failing to address the critical dimensions of trust: Source Authenticity (i.e., distinguishing genuine policy behaviors from human teleoperation) and Execution Quality (e.g., smoothness and safety). To bridge these gaps, we propose a solution that combines the Eval-Actions benchmark and the AutoEval architecture. First, we construct the Eval-Actions benchmark to support trustworthiness analysis. Distinct from existing datasets restricted to successful human demonstrations, Eval-Actions integrates VA and VLA policy execution trajectories alongside human teleoperation data, explicitly including failure scenarios. This dataset is structured around three core supervision signals: Expert Grading (EG), Rank-Guided preferences (RG), and Chain-of-Thought (CoT). Building on this, we propose the AutoEval architecture: AutoEval leverages Spatio-Temporal Aggregation for semantic assessment, augmented by an auxiliary Kinematic Calibration Signal to refine motion smoothness; AutoEval Plus (AutoEval-P) incorporates the Group Relative Policy Optimization (GRPO) paradigm to enhance logical reasoning capabilities. Experiments show AutoEval achieves Spearman's Rank Correlation Coefficients (SRCC) of 0.81 and 0.84 under the EG and RG protocols, respectively. Crucially, the framework possesses robust source discrimination capabilities, distinguishing between policy-generated and teleoperated videos with 99.6% accuracy, thereby establishing a rigorous standard for trustworthy robotic evaluation. Our project and code are available at https://term-bench.github.io/.

A Pragmatic VLA Foundation Model 2026-01-26
Show

Offering great potential in robotic manipulation, a capable Vision-Language-Action (VLA) foundation model is expected to faithfully generalize across tasks and platforms while ensuring cost efficiency (e.g., data and GPU hours required for adaptation). To this end, we develop LingBot-VLA with around 20,000 hours of real-world data from 9 popular dual-arm robot configurations. Through a systematic assessment on 3 robotic platforms, each completing 100 tasks with 130 post-training episodes per task, our model achieves clear superiority over competitors, showcasing its strong performance and broad generalizability. We have also built an efficient codebase, which delivers a throughput of 261 samples per second per GPU with an 8-GPU training setup, representing a 1.5~2.8$\times$ (depending on the relied VLM base model) speedup over existing VLA-oriented codebases. The above features ensure that our model is well-suited for real-world deployment. To advance the field of robot learning, we provide open access to the code, base model, and benchmark data, with a focus on enabling more challenging tasks and promoting sound evaluation standards.

Proje...

Project Webpage: https://technology.robbyant.com/lingbot-vla/, Code: https://github.com/Robbyant/lingbot-vla/

Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs 2026-01-26
Show

Vision-Language-Action (VLA) models have emerged as powerful generalist policies for robotic control, yet their performance scaling across model architectures and hardware platforms, as well as their associated power budgets, remain poorly understood. This work presents an evaluation of five representative VLA models -- spanning state-of-the-art baselines and two newly proposed architectures -- targeting edge and datacenter GPU platforms. Using the LIBERO benchmark, we measure accuracy alongside system-level metrics, including latency, throughput, and peak memory usage, under varying edge power constraints and high-performance datacenter GPU configurations. Our results identify distinct scaling trends: (1) architectural choices, such as action tokenization and model backbone size, strongly influence throughput and memory footprint; (2) power-constrained edge devices exhibit non-linear performance degradation, with some configurations matching or exceeding older datacenter GPUs; and (3) high-throughput variants can be achieved without significant accuracy loss. These findings provide actionable insights when selecting and optimizing VLAs across a range of deployment constraints. Our work challenges current assumptions about the superiority of datacenter hardware for robotic inference.

To ap...

To appear in the Asilomar Conference on Signals, Systems, and Computers 2025

TC-IDM: Grounding Video Generation for Executable Zero-shot Robot Motion 2026-01-26
Show

The vision-language-action (VLA) paradigm has enabled powerful robotic control by leveraging vision-language models, but its reliance on large-scale, high-quality robot data limits its generalization. Generative world models offer a promising alternative for general-purpose embodied AI, yet a critical gap remains between their pixel-level plans and physically executable actions. To this end, we propose the Tool-Centric Inverse Dynamics Model (TC-IDM). By focusing on the tool's imagined trajectory as synthesized by the world model, TC-IDM establishes a robust intermediate representation that bridges the gap between visual planning and physical control. TC-IDM extracts the tool's point cloud trajectories via segmentation and 3D motion estimation from generated videos. Considering diverse tool attributes, our architecture employs decoupled action heads to project these planned trajectories into 6-DoF end-effector motions and corresponding control signals. This plan-and-translate paradigm not only supports a wide range of end-effectors but also significantly improves viewpoint invariance. Furthermore, it exhibits strong generalization capabilities across long-horizon and out-of-distribution tasks, including interacting with deformable objects. In real-world evaluations, the world model with TC-IDM achieves an average success rate of 61.11 percent, with 77.7 percent on simple tasks and 38.46 percent on zero-shot deformable object tasks. It substantially outperforms end-to-end VLA-style baselines and other inverse dynamics models.

Safe Learning for Contact-Rich Robot Tasks: A Survey from Classical Learning-Based Methods to Safe Foundation Models 2026-01-26
Show

Contact-rich tasks pose significant challenges for robotic systems due to inherent uncertainty, complex dynamics, and the high risk of damage during interaction. Recent advances in learning-based control have shown great potential in enabling robots to acquire and generalize complex manipulation skills in such environments, but ensuring safety, both during exploration and execution, remains a critical bottleneck for reliable real-world deployment. This survey provides a comprehensive overview of safe learning-based methods for robot contact-rich tasks. We categorize existing approaches into two main domains: safe exploration and safe execution. We review key techniques, including constrained reinforcement learning, risk-sensitive optimization, uncertainty-aware modeling, control barrier functions, and model predictive safety shields, and highlight how these methods incorporate prior knowledge, task structure, and online adaptation to balance safety and efficiency. A particular emphasis of this survey is on how these safe learning principles extend to and interact with emerging robotic foundation models, especially vision-language models (VLMs) and vision-language-action models (VLAs), which unify perception, language, and control for contact-rich manipulation. We discuss both the new safety opportunities enabled by VLM/VLA-based methods, such as language-level specification of constraints and multimodal grounding of safety signals, and the amplified risks and evaluation challenges they introduce. Finally, we outline current limitations and promising future directions toward deploying reliable, safety-aligned, and foundation-model-enabled robots in complex contact-rich environments. More details and materials are available at our \href{ https://github.com/jack-sherman01/Awesome-Learning4Safe-Contact-rich-tasks}{Project GitHub Repository}.

version 2
PEAfowl: Perception-Enhanced Multi-View Vision-Language-Action for Bimanual Manipulation 2026-01-25
Show

Bimanual manipulation in cluttered scenes requires policies that remain stable under occlusions, viewpoint and scene variations. Existing vision-language-action models often fail to generalize because (i) multi-view features are fused via view-agnostic token concatenation, yielding weak 3D-consistent spatial understanding, and (ii) language is injected as global conditioning, resulting in coarse instruction grounding. In this paper, we introduce PEAfowl, a perception-enhanced multi-view VLA policy for bimanual manipulation. For spatial reasoning, PEAfowl predicts per-token depth distributions, performs differentiable 3D lifting, and aggregates local cross-view neighbors to form geometrically grounded, cross-view consistent representations. For instruction grounding, we propose to replace global conditioning with a Perceiver-style text-aware readout over frozen CLIP visual features, enabling iterative evidence accumulation. To overcome noisy and incomplete commodity depth without adding inference overhead, we apply training-only depth distillation from a pretrained depth teacher to supervise the depth-distribution head, providing perception front-end with geometry-aware priors. On RoboTwin 2.0 under domain-randomized setting, PEAfowl improves the strongest baseline by 23.0 pp in success rate, and real-robot experiments further demonstrate reliable sim-to-real transfer and consistent improvements from depth distillation. Project website: https://peafowlvla.github.io/.

Motion Focus Recognition in Fast-Moving Egocentric Video 2026-01-25
Show

From Vision-Language-Action (VLA) systems to robotics, existing egocentric datasets primarily focus on action recognition tasks, while largely overlooking the inherent role of motion analysis in sports and other fast-movement scenarios. To bridge this gap, we propose a real-time motion focus recognition method that estimates the subject's locomotion intention from any egocentric video. We leverage the foundation model for camera pose estimation and introduce system-level optimizations to enable efficient and scalable inference. Evaluated on a collected egocentric action dataset, our method achieves real-time performance with manageable memory consumption through a sliding batch inference strategy. This work makes motion-centric analysis practical for edge deployment and offers a complementary perspective to existing egocentric studies on sports and fast-movement activities.

SPACE-CLIP: Spatial Perception via Adaptive CLIP Embeddings for Monocular Depth Estimation 2026-01-25
Show

Contrastive Language-Image Pre-training (CLIP) has accomplished extraordinary success for semantic understanding but inherently struggles to perceive geometric structure. Existing methods attempt to bridge this gap by querying CLIP with textual prompts, a process that is often indirect and inefficient. This paper introduces a fundamentally different approach using a dual-pathway decoder. We present SPACE-CLIP, an architecture that unlocks and interprets latent geometric knowledge directly from a frozen CLIP vision encoder, completely bypassing the text encoder and its associated textual prompts. A semantic pathway interprets high-level features, dynamically conditioned on global context using feature-wise linear modulation (FiLM). In addition, a structural pathway extracts fine-grained spatial details from early layers. These complementary streams are hierarchically fused, enabling a robust synthesis of semantic context and precise geometry. Extensive experiments on the KITTI benchmark show that SPACE-CLIP dramatically outperforms previous CLIP-based methods. Our ablation studies validate that the synergistic fusion of our dual pathways is critical to this success. SPACE-CLIP offers a new, efficient, and architecturally elegant blueprint for repurposing large-scale vision models. The proposed method is not just a standalone depth estimator, but a readily integrable spatial perception module for the next generation of embodied AI systems, such as vision-language-action (VLA) models. Our model is available at https://github.com/taewan2002/space-clip

Mirage2Matter: A Physically Grounded Gaussian World Model from Video 2026-01-24
Show

The scalability of embodied intelligence is fundamentally constrained by the scarcity of real-world interaction data. While simulation platforms provide a promising alternative, existing approaches often suffer from a substantial visual and physical gap to real environments and rely on expensive sensors, precise robot calibration, or depth measurements, limiting their practicality at scale. We present Simulate Anything, a graphics-driven world modeling and simulation framework that enables efficient generation of high-fidelity embodied training data using only multi-view environment videos and off-the-shelf assets. Our approach reconstructs real-world environments into a photorealistic scene representation using 3D Gaussian Splatting (3DGS), seamlessly capturing fine-grained geometry and appearance from video. We then leverage generative models to recover a physically realistic representation and integrate it into a simulation environment via a precision calibration target, enabling accurate scale alignment between the reconstructed scene and the real world. Together, these components provide a unified, editable, and physically grounded world model. Vision Language Action (VLA) models trained on our simulated data achieve strong zero-shot performance on downstream tasks, matching or even surpassing results obtained with real-world data, highlighting the potential of reconstruction-driven world modeling for scalable and practical embodied intelligence training.

ReViP: Reducing False Completion in Vision-Language-Action Models with Vision-Proprioception Rebalance 2026-01-23
Show

Vision-Language-Action (VLA) models have advanced robotic manipulation by combining vision, language, and proprioception to predict actions. However, previous methods fuse proprioceptive signals directly with VLM-encoded vision-language features, resulting in state-dominant bias and false completions despite visible execution failures. We attribute this to modality imbalance, where policies over-rely on internal state while underusing visual evidence. To address this, we present ReViP, a novel VLA framework with Vision-Proprioception Rebalance to enhance visual grounding and robustness under perturbations. The key insight is to introduce auxiliary task-aware environment priors to adaptively modulate the coupling between semantic perception and proprioceptive dynamics. Specifically, we use an external VLM as a task-stage observer to extract real-time task-centric visual cues from visual observations, which drive a Vision-Proprioception Feature-wise Linear Modulation to enhance environmental awareness and reduce state-driven errors. Moreover, to evaluate false completion, we propose the first False-Completion Benchmark Suite built on LIBERO with controlled settings such as Object-Drop. Extensive experiments show that ReViP effectively reduces false-completion rates and improves success rates over strong VLA baselines on our suite, with gains extending to LIBERO, RoboTwin 2.0, and real-world evaluations.

Gen-DBA: Generative Database Agents (Towards a Move 37 for Databases) 2026-01-23
Show

Move,37 marks one of the major breakthroughs in AI in terms of its ability to surpass human expertise and discover novel strategies beyond the traditional game play in the strategic two-player board game of Go. The domains of Natural Language Processing, Computer Vision, and Robotics have also undergone a similar phenomenon through the advent of large foundational models in the form of Large Language Models (LLMs), Vision Language Models (VLMs) and Vision Language Action models (VLAs), respectively. In this paper, we investigate the current state of Artificial Intelligence for Database Systems research (AI4DB), and assess how far AI4DB systems are from achieving their own Move,37 moment. We envision a Generative Database Agent (Gen-DBA, for short) as the pathway to achieving Move,37 for database systems that will bring generative reasoning and creativity into the realm of database learning tasks. This vision paper explores this direction by presenting the recipe for building Gen-DBA that encompasses but is not limited to a Transformer backbone, a hardware-grounded tokenization mechanism, a two-stage Goal-Directed Next Token Prediction training paradigm, and a generative inference process.

IVRA: Improving Visual-Token Relations for Robot Action Policy with Training-Free Hint-Based Guidance 2026-01-22
Show

Many Vision-Language-Action (VLA) models flatten image patches into a 1D token sequence, weakening the 2D spatial cues needed for precise manipulation. We introduce IVRA, a lightweight, training-free method that improves spatial understanding by exploiting affinity hints already available in the model's built-in vision encoder, without requiring any external encoder or retraining. IVRA selectively injects these affinity signals into a language-model layer in which instance-level features reside. This inference-time intervention realigns visual-token interactions and better preserves geometric structure while keeping all model parameters fixed. We demonstrate the generality of IVRA by applying it to diverse VLA architectures (LLaRA, OpenVLA, and FLOWER) across simulated benchmarks spanning both 2D and 3D manipulation (VIMA and LIBERO) and on various real-robot tasks. On 2D VIMA, IVRA improves average success by +4.2% over the baseline LLaRA in a low-data regime. On 3D LIBERO, it yields consistent gains over the OpenVLA and FLOWER baselines, including improvements when baseline accuracy is near saturation (96.3% to 97.1%). All code and models will be released publicly. Visualizations are available at: jongwoopark7978.github.io/IVRA

Cosmos Policy: Fine-Tuning Video Models for Visuomotor Control and Planning 2026-01-22
Show

Recent video generation models demonstrate remarkable ability to capture complex physical interactions and scene evolution over time. To leverage their spatiotemporal priors, robotics works have adapted video models for policy learning but introduce complexity by requiring multiple stages of post-training and new architectural components for action generation. In this work, we introduce Cosmos Policy, a simple approach for adapting a large pretrained video model (Cosmos-Predict2) into an effective robot policy through a single stage of post-training on the robot demonstration data collected on the target platform, with no architectural modifications. Cosmos Policy learns to directly generate robot actions encoded as latent frames within the video model's latent diffusion process, harnessing the model's pretrained priors and core learning algorithm to capture complex action distributions. Additionally, Cosmos Policy generates future state images and values (expected cumulative rewards), which are similarly encoded as latent frames, enabling test-time planning of action trajectories with higher likelihood of success. In our evaluations, Cosmos Policy achieves state-of-the-art performance on the LIBERO and RoboCasa simulation benchmarks (98.5% and 67.1% average success rates, respectively) and the highest average score in challenging real-world bimanual manipulation tasks, outperforming strong diffusion policies trained from scratch, video model-based policies, and state-of-the-art vision-language-action models fine-tuned on the same robot demonstrations. Furthermore, given policy rollout data, Cosmos Policy can learn from experience to refine its world model and value function and leverage model-based planning to achieve even higher success rates in challenging tasks. We release code, models, and training data at https://research.nvidia.com/labs/dir/cosmos-policy/

DTP: A Simple yet Effective Distracting Token Pruning Framework for Vision-Language Action Models 2026-01-22
Show

Vision-Language Action (VLA) models have shown remarkable progress in robotic manipulation by leveraging the powerful perception abilities of Vision-Language Models (VLMs) to understand environments and directly output actions. However, by default, VLA models may overly attend to image tokens in the task-irrelevant region, which we describe as 'distracting tokens'. This behavior can disturb the model from the generation of the desired action tokens in each step, affecting the success rate of tasks. In this paper, we introduce a simple yet effective plug-and-play Distracting Token Pruning (DTP) framework, which dynamically detects and prunes these distracting image tokens. By correcting the model's visual attention patterns, we aim to improve the task success rate, as well as exploring the performance upper boundaries of the model without altering its original architecture or adding additional inputs. Experiments on the SIMPLER Benchmark (Li et al., 2024) show that our method consistently achieving relative improvements in task success rates across different types of novel VLA models, demonstrating generalizability to transformer-based VLAs. Further analysis reveals a negative correlation between the task success rate and the amount of attentions in the task-irrelevant region for all models tested, highlighting a common phenomenon of VLA models that could guide future research. We also publish our code at: https://anonymous.4open.science/r/CBD3.

Sigma: The Key for Vision-Language-Action Models toward Telepathic Alignment 2026-01-22
Show

To address a fundamental limitation in cognitive systems, namely the absence of a time-updatable mediating thought space between semantics and continuous control, this work constructs and trains a vision-language-action model termed Sigma, deployed on a single RTX 4090. The model is built upon the open-source pi0.5_base backbone, with the svla_so101_pickplace dataset preprocessed into a structured training corpus. An independently designed VLA architecture is introduced to integrate deep semantic understanding with associative reasoning, enabling telepathic-style alignment between perception and action. Training proceeds through iterative optimization of data preprocessing, LoRA-based fine-tuning, and inference-stage adapter design. Evaluation is conducted using offline closed-loop replay, comparing Sigma against the untuned pi0.5_base under identical data conditions. Experimental results indicate a consistent reduction in control MSE across vector-, fragment-, and trajectory-level scales, while preserving the stability of the telepathy norm and semantic-text alignment quality. These findings demonstrate that mind-responsive alignment control can be quantitatively achieved through semantic and associative architectural integration without retraining the base model, providing a reproducible pathway for semantic alignment and intention-driven behavior.

The S...

The Sigma model has been open-sourced on Hugging Face. Weights, dataset, some scripts, and logs are all available. The link is: https://huggingface.co/Veltraxor/Sigma

World Model

Title Date Abstract Comment
Visuo-Tactile World Models 2026-02-05
Show

We introduce multi-task Visuo-Tactile World Models (VT-WM), which capture the physics of contact through touch reasoning. By complementing vision with tactile sensing, VT-WM better understands robot-object interactions in contact-rich tasks, avoiding common failure modes of vision-only models under occlusion or ambiguous contact states, such as objects disappearing, teleporting, or moving in ways that violate basic physics. Trained across a set of contact-rich manipulation tasks, VT-WM improves physical fidelity in imagination, achieving 33% better performance at maintaining object permanence and 29% better compliance with the laws of motion in autoregressive rollouts. Moreover, experiments show that grounding in contact dynamics also translates to planning. In zero-shot real-robot experiments, VT-WM achieves up to 35% higher success rates, with the largest gains in multi-step, contact-rich tasks. Finally, VT-WM demonstrates significant downstream versatility, effectively adapting its learned contact dynamics to a novel task and achieving reliable planning success with only a limited set of demonstrations.

Preprint
Verification of the Implicit World Model in a Generative Model via Adversarial Sequences 2026-02-05
Show

Generative sequence models are typically trained on sample sequences from natural or formal languages. It is a crucial question whether -- or to what extent -- sample-based training is able to capture the true structure of these languages, often referred to as the ``world model''. Theoretical results indicate that we can hope for soundness at best, that is, generating valid sequences, but not necessarily all of them. However, it is still important to have practical tools that are able to verify whether a given sequence model is sound. In this study, we focus on chess, as it is a domain that provides enough complexity while having a simple rule-based world model. We propose adversarial sequence generation for verifying the soundness of the sequence model. Our adversaries generate valid sequences so as to force the sequence model to generate an invalid next move prediction. Apart from the falsification of soundness, this method is also suitable for a more fine-grained analysis of the failure modes and the effects of different choices during training. To demonstrate this, we propose a number of methods for adversarial sequence generation and evaluate the approach on a large set of chess models. We train models on random as well as high-quality chess games, using several training recipes. We find that none of the models are sound, but some training techniques and dataset choices are able to improve soundness remarkably. We also investigate the potential application of board state probes in both our training and attack methods. Our findings indicate that the extracted board states have no causal role in next token prediction in most of the models.

Accep...

Accepted at ICLR 2026. Code, datasets, and models are available at https://github.com/szegedai/world-model-verification

The Double Life of Code World Models: Provably Unmasking Malicious Behavior Through Execution Traces 2026-02-05
Show

Large language models (LLMs) increasingly generate code with minimal human oversight, raising critical concerns about backdoor injection and malicious behavior. We present Cross-Trace Verification Protocol (CTVP), a novel AI control framework that verifies untrusted code-generating models through semantic orbit analysis. Rather than directly executing potentially malicious code, CTVP leverages the model's own predictions of execution traces across semantically equivalent program transformations. By analyzing consistency patterns in these predicted traces, we detect behavioral anomalies indicative of backdoors. Our approach introduces the Adversarial Robustness Quotient (ARQ), which quantifies the computational cost of verification relative to baseline generation, demonstrating exponential growth with orbit size. Theoretical analysis establishes information-theoretic bounds showing non-gamifiability - adversaries cannot improve through training due to fundamental space complexity constraints. This work demonstrates that semantic orbit analysis provides a theoretically grounded approach to AI control for code generation tasks, though practical deployment requires addressing the high false positive rates observed in initial evaluations.

13 Pages, A Preprint
Reinforcement World Model Learning for LLM-based Agents 2026-02-05
Show

Large language models (LLMs) have achieved strong performance in language-centric tasks. However, in agentic settings, LLMs often struggle to anticipate action consequences and adapt to environment dynamics, highlighting the need for world-modeling capabilities in LLM-based agents. We propose Reinforcement World Model Learning (RWML), a self-supervised method that learns action-conditioned world models for LLM-based agents on textual states using sim-to-real gap rewards. Our method aligns simulated next states produced by the model with realized next states observed from the environment, encouraging consistency between internal world simulations and actual environment dynamics in a pre-trained embedding space. Unlike next-state token prediction, which prioritizes token-level fidelity (i.e., reproducing exact wording) over semantic equivalence and can lead to model collapse, our method provides a more robust training signal and is empirically less susceptible to reward hacking than LLM-as-a-judge. We evaluate our method on ALFWorld and $τ^2$ Bench and observe significant gains over the base model, despite being entirely self-supervised. When combined with task-success rewards, our method outperforms direct task-success reward RL by 6.9 and 5.7 points on ALFWorld and $τ^2$ Bench respectively, while matching the performance of expert-data training.

PIRATR: Parametric Object Inference for Robotic Applications with Transformers in 3D Point Clouds 2026-02-05
Show

We present PIRATR, an end-to-end 3D object detection framework for robotic use cases in point clouds. Extending PI3DETR, our method streamlines parametric 3D object detection by jointly estimating multi-class 6-DoF poses and class-specific parametric attributes directly from occlusion-affected point cloud data. This formulation enables not only geometric localization but also the estimation of task-relevant properties for parametric objects, such as a gripper's opening, where the 3D model is adjusted according to simple, predefined rules. The architecture employs modular, class-specific heads, making it straightforward to extend to novel object types without re-designing the pipeline. We validate PIRATR on an automated forklift platform, focusing on three structurally and functionally diverse categories: crane grippers, loading platforms, and pallets. Trained entirely in a synthetic environment, PIRATR generalizes effectively to real outdoor LiDAR scans, achieving a detection mAP of 0.919 without additional fine-tuning. PIRATR establishes a new paradigm of pose-aware, parameterized perception. This bridges the gap between low-level geometric reasoning and actionable world models, paving the way for scalable, simulation-trained perception systems that can be deployed in dynamic robotic environments. Code available at https://github.com/swingaxe/piratr.

8 Pag...

8 Pages, 11 Figures, Accepted at 2026 IEEE International Conference on Robotics & Automation (ICRA) Vienna

Safe Urban Traffic Control via Uncertainty-Aware Conformal Prediction and World-Model Reinforcement Learning 2026-02-04
Show

Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4% coverage efficiency, controls FDR at 4.1% under verified dependence, and improves safety rate to 95.2% compared to 69% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.

Dual Mind World Model Inspired Network Digital Twin for Access Scheduling 2026-02-04
Show

Emerging networked systems such as industrial IoT and real-time cyber-physical infrastructures demand intelligent scheduling strategies capable of adapting to dynamic traffic, deadlines, and interference constraints. In this work, we present a novel Digital Twin-enabled scheduling framework inspired by Dual Mind World Model (DMWM) architecture, for learning-informed and imagination-driven network control. Unlike conventional rule-based or purely data-driven policies, the proposed DMWM combines short-horizon predictive planning with symbolic model-based rollout, enabling the scheduler to anticipate future network states and adjust transmission decisions accordingly. We implement the framework in a configurable simulation testbed and benchmark its performance against traditional heuristics and reinforcement learning baselines under varied traffic conditions. Our results show that DMWM achieves superior performance in bursty, interference-limited, and deadline-sensitive environments, while maintaining interpretability and sample efficiency. The proposed design bridges the gap between network-level reasoning and low-overhead learning, marking a step toward scalable and adaptive NDT-based network optimization.

Language Models Struggle to Use Representations Learned In-Context 2026-02-04
Show

Though large language models (LLMs) have enabled great success across a wide variety of tasks, they still appear to fall short of one of the loftier goals of artificial intelligence research: creating an artificial system that can adapt its behavior to radically new contexts upon deployment. One important step towards this goal is to create systems that can induce rich representations of data that are seen in-context, and then flexibly deploy these representations to accomplish goals. Recently, Park et al. (2024) demonstrated that current LLMs are indeed capable of inducing such representation from context (i.e., in-context representation learning). The present study investigates whether LLMs can use these representations to complete simple downstream tasks. We first assess whether open-weights LLMs can use in-context representations for next-token prediction, and then probe models using a novel task, adaptive world modeling. In both tasks, we find evidence that open-weights LLMs struggle to deploy representations of novel semantics that are defined in-context, even if they encode these semantics in their latent representations. Furthermore, we assess closed-source, state-of-the-art reasoning models on the adaptive world modeling task, demonstrating that even the most performant LLMs cannot reliably leverage novel patterns presented in-context. Overall, this work seeks to inspire novel methods for encouraging models to not only encode information presented in-context, but to do so in a manner that supports flexible deployment of this information.

Simulating the Visual World with Artificial Intelligence: A Roadmap 2026-02-03
Show

The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.

Proje...

Project page: https://world-model-roadmap.github.io/ Github Repo: https://github.com/ziqihuangg/Awesome-From-Video-Generation-to-World-Model

Active Epistemic Control for Query-Efficient Verified Planning 2026-02-03
Show

Planning in interactive environments is challenging under partial observability: task-critical preconditions (e.g., object locations or container states) may be unknown at decision time, yet grounding them through interaction is costly. Learned world models can cheaply predict missing facts, but prediction errors can silently induce infeasible commitments. We present \textbf{Active Epistemic Control (AEC)}, an epistemic-categorical planning layer that integrates model-based belief management with categorical feasibility checks. AEC maintains a strict separation between a \emph{grounded fact store} used for commitment and a \emph{belief store} used only for pruning candidate plans. At each step, it either queries the environment to ground an unresolved predicate when uncertainty is high or predictions are ambiguous, or simulates the predicate to filter hypotheses when confidence is sufficient. Final commitment is gated by grounded precondition coverage and an SQ-BCP pullback-style compatibility check, so simulated beliefs affect efficiency but cannot directly certify feasibility. Experiments on ALFWorld and ScienceWorld show that AEC achieves competitive success with fewer replanning rounds than strong LLM-agent baselines.

BridgeV2W: Bridging Video Generation Models to Embodied World Models via Embodiment Masks 2026-02-03
Show

Embodied world models have emerged as a promising paradigm in robotics, most of which leverage large-scale Internet videos or pretrained video generation models to enrich visual and motion priors. However, they still face key challenges: a misalignment between coordinate-space actions and pixel-space videos, sensitivity to camera viewpoint, and non-unified architectures across embodiments. To this end, we present BridgeV2W, which converts coordinate-space actions into pixel-aligned embodiment masks rendered from the URDF and camera parameters. These masks are then injected into a pretrained video generation model via a ControlNet-style pathway, which aligns the action control signals with predicted videos, adds view-specific conditioning to accommodate camera viewpoints, and yields a unified world model architecture across embodiments. To mitigate overfitting to static backgrounds, BridgeV2W further introduces a flow-based motion loss that focuses on learning dynamic and task-relevant regions. Experiments on single-arm (DROID) and dual-arm (AgiBot-G1) datasets, covering diverse and challenging conditions with unseen viewpoints and scenes, show that BridgeV2W improves video generation quality compared to prior state-of-the-art methods. We further demonstrate the potential of BridgeV2W on downstream real-world tasks, including policy evaluation and goal-conditioned planning. More results can be found on our project website at https://BridgeV2W.github.io .

LIVE: Long-horizon Interactive Video World Modeling 2026-02-03
Show

Autoregressive video world models predict future visual observations conditioned on actions. While effective over short horizons, these models often struggle with long-horizon generation, as small prediction errors accumulate over time. Prior methods alleviate this by introducing pre-trained teacher models and sequence-level distribution matching, which incur additional computational cost and fail to prevent error propagation beyond the training horizon. In this work, we propose LIVE, a Long-horizon Interactive Video world modEl that enforces bounded error accumulation via a novel cycle-consistency objective, thereby eliminating the need for teacher-based distillation. Specifically, LIVE first performs a forward rollout from ground-truth frames and then applies a reverse generation process to reconstruct the initial state. The diffusion loss is subsequently computed on the reconstructed terminal state, providing an explicit constraint on long-horizon error propagation. Moreover, we provide an unified view that encompasses different approaches and introduce progressive training curriculum to stabilize training. Experiments demonstrate that LIVE achieves state-of-the-art performance on long-horizon benchmarks, generating stable, high-quality videos far beyond training rollout lengths.

18 pages, 22 figures
Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory 2026-02-03
Show

We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.

proje...

project page: https://rq-wu.github.io/projects/infinite-world/index.html

A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures 2026-02-03
Show

We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.

Building spatial world models from sparse transitional episodic memories 2026-02-03
Show

Many animals possess a remarkable capacity to rapidly construct flexible cognitive maps of their environments. These maps are crucial for ethologically relevant behaviors such as navigation, exploration, and planning. Existing computational models typically require long sequential trajectories to build accurate maps, but neuroscience evidence suggests maps can also arise from integrating disjoint experiences governed by consistent spatial rules. We introduce the Episodic Spatial World Model (ESWM), a novel framework that constructs spatial maps from sparse, disjoint episodic memories. Across environments of varying complexity, ESWM predicts unobserved transitions from minimal experience, and the geometry of its latent space aligns with that of the environment. Because it operates on episodic memories that can be independently stored and updated, ESWM is inherently adaptive, enabling rapid adjustment to environmental changes. Furthermore, we demonstrate that ESWM readily enables near-optimal strategies for exploring novel environments and navigating between arbitrary points, all without the need for additional training. Our work demonstrates how neuroscience-inspired principles of episodic memory can advance the development of more flexible and generalizable world models.

Accepted ICLR 2026
Accurate and Efficient World Modeling with Masked Latent Transformers 2026-02-03
Show

The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.

EHRWorld: A Patient-Centric Medical World Model for Long-Horizon Clinical Trajectories 2026-02-03
Show

World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.

A Minimal Task Reveals Emergent Path Integration and Object-Location Binding in a Predictive Sequence Model 2026-02-03
Show

Adaptive cognition requires structured internal models representing objects and their relations. Predictive neural networks are often proposed to form such "world models", yet their underlying mechanisms remain unclear. One hypothesis is that action-conditioned sequential prediction suffices for learning such world models. In this work, we investigate this possibility in a minimal in-silico setting. Sequentially sampling tokens from 2D continuous token scenes, a recurrent neural network is trained to predict the upcoming token from current input and a saccade-like displacement. On novel scenes, prediction accuracy improves across the sequence, indicating in-context learning. Decoding analyses reveal path integration and dynamic binding of token identity to position. Interventional analyses show that new bindings can be learned late in sequence and that out-of-distribution bindings can be learned. Together, these results demonstrate how structured representations that rely on flexible binding emerge to support prediction, offering a mechanistic account of sequential world modeling relevant to cognitive science.

7 pages, 4 figures
InstaDrive: Instance-Aware Driving World Models for Realistic and Consistent Video Generation 2026-02-03
Show

Autonomous driving relies on robust models trained on high-quality, large-scale multi-view driving videos. While world models offer a cost-effective solution for generating realistic driving videos, they struggle to maintain instance-level temporal consistency and spatial geometric fidelity. To address these challenges, we propose InstaDrive, a novel framework that enhances driving video realism through two key advancements: (1) Instance Flow Guider, which extracts and propagates instance features across frames to enforce temporal consistency, preserving instance identity over time. (2) Spatial Geometric Aligner, which improves spatial reasoning, ensures precise instance positioning, and explicitly models occlusion hierarchies. By incorporating these instance-aware mechanisms, InstaDrive achieves state-of-the-art video generation quality and enhances downstream autonomous driving tasks on the nuScenes dataset. Additionally, we utilize CARLA's autopilot to procedurally and stochastically simulate rare but safety-critical driving scenarios across diverse maps and regions, enabling rigorous safety evaluation for autonomous systems. Our project page is https://shanpoyang654.github.io/InstaDrive/page.html.

ConsisDrive: Identity-Preserving Driving World Models for Video Generation by Instance Mask 2026-02-03
Show

Autonomous driving relies on robust models trained on large-scale, high-quality multi-view driving videos. Although world models provide a cost-effective solution for generating realistic driving data, they often suffer from identity drift, where the same object changes its appearance or category across frames due to the absence of instance-level temporal constraints. We introduce ConsisDrive, an identity-preserving driving world model designed to enforce temporal consistency at the instance level. Our framework incorporates two key components: (1) Instance-Masked Attention, which applies instance identity masks and trajectory masks within attention blocks to ensure that visual tokens interact only with their corresponding instance features across spatial and temporal dimensions, thereby preserving object identity consistency; and (2) Instance-Masked Loss, which adaptively emphasizes foreground regions with probabilistic instance masking, reducing background noise while maintaining overall scene fidelity. By integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video generation quality and demonstrates significant improvements in downstream autonomous driving tasks on the nuScenes dataset. Our project page is https://shanpoyang654.github.io/ConsisDrive/page.html.

A Unified Definition of Hallucination: It's The World Model, Stupid! 2026-02-03
Show

Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.

Hallu...

HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld

General Agents Contain World Models, even under Partial Observability and Stochasticity 2026-02-03
Show

Deciding whether an agent possesses a model of its surrounding world is a fundamental step toward understanding its capabilities and limitations. In [10], it was shown that, within a particular framework, every almost optimal and general agent necessarily contains sufficient knowledge of its environment to allow an approximate reconstruction of it by querying the agent as a black box. This result relied on the assumptions that the agent is deterministic and that the environment is fully observable. In this work, we remove both assumptions by extending the theorem to stochastic agents operating in partially observable environments. Fundamentally, this shows that stochastic agents cannot avoid learning their environment through the usage of randomization. We also strengthen the result by weakening the notion of generality, proving that less powerful agents already contain a model of the world in which they operate.

19 pages, 4 figures
DDP-WM: Disentangled Dynamics Prediction for Efficient World Models 2026-02-03
Show

World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM.

Codes...

Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM

Latent Perspective-Taking via a Schrödinger Bridge in Influence-Augmented Local Models 2026-02-02
Show

Operating in environments alongside humans requires robots to make decisions under uncertainty. In addition to exogenous dynamics, they must reason over others' hidden mental-models and mental-states. While Interactive POMDPs and Bayesian Theory of Mind formulations are principled, exact nested-belief inference is intractable, and hand-specified models are brittle in open-world settings. We address both by learning structured mental-models and an estimator of others' mental-states. Building on the Influence-Based Abstraction, we instantiate an Influence-Augmented Local Model to decompose socially-aware robot tasks into local dynamics, social influences, and exogenous factors. We propose (a) a neuro-symbolic world model instantiating a factored, discrete Dynamic Bayesian Network, and (b) a perspective-shift operator modeled as an amortized Schrödinger Bridge over the learned local dynamics that transports factored egocentric beliefs into other-centric beliefs. We show that this architecture enables agents to synthesize socially-aware policies in model-based reinforcement learning, via decision-time mental-state planning (a Schrödinger Bridge in belief space), with preliminary results in a MiniGrid social navigation task.

Exten...

Extended Abstract & Poster, Presented at World Modeling Workshop 2026

Joint Learning of Hierarchical Neural Options and Abstract World Model 2026-02-02
Show

Building agents that can perform new skills by composing existing skills is a long-standing goal of AI agent research. Towards this end, we investigate how to efficiently acquire a sequence of skills, formalized as hierarchical neural options. However, existing model-free hierarchical reinforcement algorithms need a lot of data. We propose a novel method, which we call AgentOWL (Option and World model Learning Agent), that jointly learns -- in a sample efficient way -- an abstract world model (abstracting across both states and time) and a set of hierarchical neural options. We show, on a subset of Object-Centric Atari games, that our method can learn more skills using much less data than baseline methods.

World-Gymnast: Training Robots with Reinforcement Learning in a World Model 2026-02-02
Show

Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.

https...

https://world-gymnast.github.io/

Self-Supervised Learning from Structural Invariance 2026-02-02
Show

Joint-embedding self-supervised learning (SSL), the key paradigm for unsupervised representation learning from visual data, learns from invariances between semantically-related data pairs. We study the one-to-many mapping problem in SSL, where each datum may be mapped to multiple valid targets. This arises when data pairs come from naturally occurring generative processes, e.g., successive video frames. We show that existing methods struggle to flexibly capture this conditional uncertainty. As a remedy, we introduce a latent variable to account for this uncertainty and derive a variational lower bound on the mutual information between paired embeddings. Our derivation yields a simple regularization term for standard SSL objectives. The resulting method, which we call AdaSSL, applies to both contrastive and distillation-based SSL objectives, and we empirically show its versatility in causal representation learning, fine-grained image understanding, and world modeling on videos.

ICLR 2026
Choice-Model-Assisted Q-learning for Delayed-Feedback Revenue Management 2026-02-02
Show

We study reinforcement learning for revenue management with delayed feedback, where a substantial fraction of value is determined by customer cancellations and modifications observed days after booking. We propose \emph{choice-model-assisted RL}: a calibrated discrete choice model is used as a fixed partial world model to impute the delayed component of the learning target at decision time. In the fixed-model deployment regime, we prove that tabular Q-learning with model-imputed targets converges to an $O(\varepsilon/(1-γ))$ neighborhood of the optimal Q-function, where $\varepsilon$ summarizes partial-model error, with an additional $O(t^{-1/2})$ sampling term. Experiments in a simulator calibrated from 61{,}619 hotel bookings (1{,}088 independent runs) show: (i) no statistically detectable difference from a maturity-buffer DQN baseline in stationary settings; (ii) positive effects under in-family parameter shifts, with significant gains in 5 of 10 shift scenarios after Holm--Bonferroni correction (up to 12.4%); and (iii) consistent degradation under structural misspecification, where the choice model assumptions are violated (1.4--2.6% lower revenue). These results characterize when partial behavioral models improve robustness under shift and when they introduce harmful bias.

An Empirical Study of World Model Quantization 2026-02-02
Show

World models learn an internal representation of environment dynamics, enabling agents to simulate and reason about future states within a compact latent space for tasks such as planning, prediction, and inference. However, running world models rely on hevay computational cost and memory footprint, making model quantization essential for efficient deployment. To date, the effects of post-training quantization (PTQ) on world models remain largely unexamined. In this work, we present a systematic empirical study of world model quantization using DINO-WM as a representative case, evaluating diverse PTQ methods under both weight-only and joint weight-activation settings. We conduct extensive experiments on different visual planning tasks across a wide range of bit-widths, quantization granularities, and planning horizons up to 50 iterations. Our results show that quantization effects in world models extend beyond standard accuracy and bit-width trade-offs: group-wise weight quantization can stabilize low-bit rollouts, activation quantization granularity yields inconsistent benefits, and quantization sensitivity is highly asymmetric between encoder and predictor modules. Moreover, aggressive low-bit quantization significantly degrades the alignment between the planning objective and task success, leading to failures that cannot be remedied by additional optimization. These findings reveal distinct quantization-induced failure modes in world model-based planning and provide practical guidance for deploying quantized world models under strict computational constraints. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/QuantWM.

UniDriveDreamer: A Single-Stage Multimodal World Model for Autonomous Driving 2026-02-02
Show

World models have demonstrated significant promise for data synthesis in autonomous driving. However, existing methods predominantly concentrate on single-modality generation, typically focusing on either multi-camera video or LiDAR sequence synthesis. In this paper, we propose UniDriveDreamer, a single-stage unified multimodal world model for autonomous driving, which directly generates multimodal future observations without relying on intermediate representations or cascaded modules. Our framework introduces a LiDAR-specific variational autoencoder (VAE) designed to encode input LiDAR sequences, alongside a video VAE for multi-camera images. To ensure cross-modal compatibility and training stability, we propose Unified Latent Anchoring (ULA), which explicitly aligns the latent distributions of the two modalities. The aligned features are fused and processed by a diffusion transformer that jointly models their geometric correspondence and temporal evolution. Additionally, structured scene layout information is projected per modality as a conditioning signal to guide the synthesis. Extensive experiments demonstrate that UniDriveDreamer outperforms previous state-of-the-art methods in both video and LiDAR generation, while also yielding measurable improvements in downstream

16 pages, 7 figures
Grounding Generated Videos in Feasible Plans via World Models 2026-02-02
Show

Large-scale video generative models have shown emerging capabilities as zero-shot visual planners, yet video-generated plans often violate temporal consistency and physical constraints, leading to failures when mapped to executable actions. To address this, we propose Grounding Video Plans with World Models (GVP-WM), a planning method that grounds video-generated plans into feasible action sequences using a learned action-conditioned world model. At test-time, GVP-WM first generates a video plan from initial and goal observations, then projects the video guidance onto the manifold of dynamically feasible latent trajectories via video-guided latent collocation. In particular, we formulate grounding as a goal-conditioned latent-space trajectory optimization problem that jointly optimizes latent states and actions under world-model dynamics, while preserving semantic alignment with the video-generated plan. Empirically, GVP-WM recovers feasible long-horizon plans from zero-shot image-to-video-generated and motion-blurred videos that violate physical constraints, across navigation and manipulation simulation tasks.

3D Dynamics-Aware Manipulation: Endowing Manipulation Policies with 3D Foresight 2026-02-02
Show

The incorporation of world modeling into manipulation policy learning has pushed the boundary of manipulation performance. However, existing efforts simply model the 2D visual dynamics, which is insufficient for robust manipulation when target tasks involve prominent depth-wise movement. To address this, we present a 3D dynamics-aware manipulation framework that seamlessly integrates 3D world modeling and policy learning. Three self-supervised learning tasks (current depth estimation, future RGB-D prediction, 3D flow prediction) are introduced within our framework, which complement each other and endow the policy model with 3D foresight. Extensive experiments on simulation and the real world show that 3D foresight can greatly boost the performance of manipulation policies without sacrificing inference speed. Code is available at https://github.com/Stardust-hyx/3D-Foresight.

ICRA 2026
Fast Autoregressive Video Diffusion and World Models with Temporal Cache Compression and Sparse Attention 2026-02-02
Show

Autoregressive video diffusion models enable streaming generation, opening the door to long-form synthesis, video world models, and interactive neural game engines. However, their core attention layers become a major bottleneck at inference time: as generation progresses, the KV cache grows, causing both increasing latency and escalating GPU memory, which in turn restricts usable temporal context and harms long-range consistency. In this work, we study redundancy in autoregressive video diffusion and identify three persistent sources: near-duplicate cached keys across frames, slowly evolving (largely semantic) queries/keys that make many attention computations redundant, and cross-attention over long prompts where only a small subset of tokens matters per frame. Building on these observations, we propose a unified, training-free attention framework for autoregressive diffusion: TempCache compresses the KV cache via temporal correspondence to bound cache growth; AnnCA accelerates cross-attention by selecting frame-relevant prompt tokens using fast approximate nearest neighbor (ANN) matching; and AnnSA sparsifies self-attention by restricting each query to semantically matched keys, also using a lightweight ANN. Together, these modules reduce attention, compute, and memory and are compatible with existing autoregressive diffusion backbones and world models. Experiments demonstrate up to x5--x10 end-to-end speedups while preserving near-identical visual quality and, crucially, maintaining stable throughput and nearly constant peak GPU memory usage over long rollouts, where prior methods progressively slow down and suffer from increasing memory usage.

Proje...

Project Page: https://dvirsamuel.github.io/fast-auto-regressive-video/

SafePred: A Predictive Guardrail for Computer-Using Agents via World Models 2026-02-02
Show

With the widespread deployment of Computer-using Agents (CUAs) in complex real-world environments, prevalent long-term risks often lead to severe and irreversible consequences. Most existing guardrails for CUAs adopt a reactive approach, constraining agent behavior only within the current observation space. While these guardrails can prevent immediate short-term risks (e.g., clicking on a phishing link), they cannot proactively avoid long-term risks: seemingly reasonable actions can lead to high-risk consequences that emerge with a delay (e.g., cleaning logs leads to future audits being untraceable), which reactive guardrails cannot identify within the current observation space. To address these limitations, we propose a predictive guardrail approach, with the core idea of aligning predicted future risks with current decisions. Based on this approach, we present SafePred, a predictive guardrail framework for CUAs that establishes a risk-to-decision loop to ensure safe agent behavior. SafePred supports two key abilities: (1) Short- and long-term risk prediction: by using safety policies as the basis for risk prediction, SafePred leverages the prediction capability of the world model to generate semantic representations of both short-term and long-term risks, thereby identifying and pruning actions that lead to high-risk states; (2) Decision optimization: translating predicted risks into actionable safe decision guidances through step-level interventions and task-level re-planning. Extensive experiments show that SafePred significantly reduces high-risk behaviors, achieving over 97.6% safety performance and improving task utility by up to 21.4% compared with reactive baselines.

From Perception to Action: Spatial AI Agents and World Models 2026-02-02
Show

While large language models have become the prevailing approach for agentic reasoning and planning, their success in symbolic domains does not readily translate to the physical world. Spatial intelligence, the ability to perceive 3D structure, reason about object relationships, and act under physical constraints, is an orthogonal capability that proves important for embodied agents. Existing surveys address either agentic architectures or spatial domains in isolation. None provide a unified framework connecting these complementary capabilities. This paper bridges that gap. Through a thorough review of over 2,000 papers, citing 742 works from top-tier venues, we introduce a unified three-axis taxonomy connecting agentic capabilities with spatial tasks across scales. Crucially, we distinguish spatial grounding (metric understanding of geometry and physics) from symbolic grounding (associating images with text), arguing that perception alone does not confer agency. Our analysis reveals three key findings mapped to these axes: (1) hierarchical memory systems (Capability axis) are important for long-horizon spatial tasks. (2) GNN-LLM integration (Task axis) is a promising approach for structured spatial reasoning. (3) World models (Scale axis) are essential for safe deployment across micro-to-macro spatial scales. We conclude by identifying six grand challenges and outlining directions for future research, including the need for unified evaluation frameworks to standardize cross-domain assessment. This taxonomy provides a foundation for unifying fragmented research efforts and enabling the next generation of spatially-aware autonomous systems in robotics, autonomous vehicles, and geospatial intelligence.

61 pa...

61 pages, 742 citations, 1 figure, 3 tables. Survey paper on spatial AI agents, embodied AI, graph neural networks, and world models

Research on World Models Is Not Merely Injecting World Knowledge into Specific Tasks 2026-02-02
Show

World models have emerged as a critical frontier in AI research, aiming to enhance large models by infusing them with physical dynamics and world knowledge. The core objective is to enable agents to understand, predict, and interact with complex environments. However, current research landscape remains fragmented, with approaches predominantly focused on injecting world knowledge into isolated tasks, such as visual prediction, 3D estimation, or symbol grounding, rather than establishing a unified definition or framework. While these task-specific integrations yield performance gains, they often lack the systematic coherence required for holistic world understanding. In this paper, we analyze the limitations of such fragmented approaches and propose a unified design specification for world models. We suggest that a robust world model should not be a loose collection of capabilities but a normative framework that integrally incorporates interaction, perception, symbolic reasoning, and spatial representation. This work aims to provide a structured perspective to guide future research toward more general, robust, and principled models of the world.

13 pages, 4 figures
Generative Visual Code Mobile World Models 2026-02-02
Show

Mobile Graphical User Interface (GUI) World Models (WMs) offer a promising path for improving mobile GUI agent performance at train- and inference-time. However, current approaches face a critical trade-off: text-based WMs sacrifice visual fidelity, while the inability of visual WMs in precise text rendering led to their reliance on slow, complex pipelines dependent on numerous external models. We propose a novel paradigm: visual world modeling via renderable code generation, where a single Vision-Language Model (VLM) predicts the next GUI state as executable web code that renders to pixels, rather than generating pixels directly. This combines the strengths of both approaches: VLMs retain their linguistic priors for precise text rendering while their pre-training on structured web code enables high-fidelity visual generation. We introduce gWorld (8B, 32B), the first open-weight visual mobile GUI WMs built on this paradigm, along with a data generation framework (gWorld) that automatically synthesizes code-based training data. In extensive evaluation across 4 in- and 2 out-of-distribution benchmarks, gWorld sets a new pareto frontier in accuracy versus model size, outperforming 8 frontier open-weight models over 50.25x larger. Further analyses show that (1) scaling training data via gWorld yields meaningful gains, (2) each component of our pipeline improves data quality, and (3) stronger world modeling improves downstream mobile GUI policy performance.

Pre-p...

Pre-print (technical report)

UniDWM: Towards a Unified Driving World Model via Multifaceted Representation Learning 2026-02-02
Show

Achieving reliable and efficient planning in complex driving environments requires a model that can reason over the scene's geometry, appearance, and dynamics. We present UniDWM, a unified driving world model that advances autonomous driving through multifaceted representation learning. UniDWM constructs a structure- and dynamic-aware latent world representation that serves as a physically grounded state space, enabling consistent reasoning across perception, prediction, and planning. Specifically, a joint reconstruction pathway learns to recover the scene's structure, including geometry and visual texture, while a collaborative generation framework leverages a conditional diffusion transformer to forecast future world evolution within the latent space. Furthermore, we show that our UniDWM can be deemed as a variation of VAE, which provides theoretical guidance for the multifaceted representation learning. Extensive experiments demonstrate the effectiveness of UniDWM in trajectory planning, 4D reconstruction and generation, highlighting the potential of multifaceted world representations as a foundation for unified driving intelligence. The code will be publicly available at https://github.com/Say2L/UniDWM.

InterDreamer: Zero-Shot Text to 3D Dynamic Human-Object Interaction 2026-02-01
Show

Text-conditioned human motion generation has experienced significant advancements with diffusion models trained on extensive motion capture data and corresponding textual annotations. However, extending such success to 3D dynamic human-object interaction (HOI) generation faces notable challenges, primarily due to the lack of large-scale interaction data and comprehensive descriptions that align with these interactions. This paper takes the initiative and showcases the potential of generating human-object interactions without direct training on text-interaction pair data. Our key insight in achieving this is that interaction semantics and dynamics can be decoupled. Being unable to learn interaction semantics through supervised training, we instead leverage pre-trained large models, synergizing knowledge from a large language model and a text-to-motion model. While such knowledge offers high-level control over interaction semantics, it cannot grasp the intricacies of low-level interaction dynamics. To overcome this issue, we further introduce a world model designed to comprehend simple physics, modeling how human actions influence object motion. By integrating these components, our novel framework, InterDreamer, is able to generate text-aligned 3D HOI sequences in a zero-shot manner. We apply InterDreamer to the BEHAVE and CHAIRS datasets, and our comprehensive experimental analysis demonstrates its capability to generate realistic and coherent interaction sequences that seamlessly align with the text directives.

NeurI...

NeurIPS 2024. Project Page: https://sirui-xu.github.io/InterDreamer/

Mixture-of-World Models: Scaling Multi-Task Reinforcement Learning with Modular Latent Dynamics 2026-02-01
Show

A fundamental challenge in multi-task reinforcement learning (MTRL) is achieving sample efficiency in visual domains where tasks exhibit substantial heterogeneity in both observations and dynamics. Model-based reinforcement learning offers a promising path to improved sample efficiency through world models, but standard monolithic architectures struggle to capture diverse task dynamics, resulting in poor reconstruction and prediction accuracy. We introduce Mixture-of-World Models (MoW), a scalable architecture that combines modular variational autoencoders for task-adaptive visual compression, a hybrid Transformer-based dynamics model with task-conditioned experts and a shared backbone, and a gradient-based task clustering strategy for efficient parameter allocation. On the Atari 100k benchmark, a single MoW agent trained once on 26 Atari games achieves a mean human-normalized score of 110.4%, competitive with the score of 114.2% achieved by STORM, an ensemble of 26 task-specific models, while using 50% fewer parameters. On Meta-World, MoW achieves a 74.5% average success rate within 300 thousand environment steps, establishing a new state of the art. These results demonstrate that MoW provides a scalable and parameter-efficient foundation for generalist world models.

The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey 2026-02-01
Show

The Driving World Model (DWM), which focuses on predicting scene evolution during the driving process, has emerged as a promising paradigm in the pursuit of autonomous driving (AD). DWMs enable AD systems to better perceive, understand, and interact with dynamic driving environments. In this survey, we provide a comprehensive overview of the latest progress in DWM. First, we review the DWM ecosystem, which is constructed using mainstream simulators, high-impact datasets, and various metrics that evaluate DWMs across multiple dimensions. We then categorize existing approaches based on the modalities of the predicted scenes, including video, point cloud, occupancy, latent feature, and traffic map, and summarize their specific applications in AD research. In addition, the performance of representative approaches across generating and driving tasks is presented. Finally, we discuss the potential limitations of current research and propose future directions. This survey provides valuable insights into the development and application of DWM, fostering its broader adoption in AD. The relevant papers are collected at https://github.com/LMD0311/Awesome-World-Model.

For c...

For continuous updates, please follow the repository: https://github.com/LMD0311/Awesome-World-Model

Human-Inspired Neuro-Symbolic World Modeling and Logic Reasoning for Interpretable Safe UAV Landing Site Assessment 2026-02-01
Show

Reliable assessment of safe landing sites in unstructured environments is essential for deploying Unmanned Aerial Vehicles (UAVs) in real-world applications such as delivery, inspection, and surveillance. Existing learning-based approaches often degrade under covariate shift and offer limited transparency, making their decisions difficult to interpret and validate on resource-constrained platforms. We present NeuroSymLand, a neuro-symbolic framework for marker-free UAV landing site safety assessment that explicitly separates perception-driven world modeling from logic-based safety reasoning. A lightweight segmentation model incrementally constructs a probabilistic semantic scene graph encoding objects, attributes, and spatial relations. Symbolic safety rules, synthesized offline via large language models with human-in-the-loop refinement, are executed directly over this world model at runtime to perform white-box reasoning, producing ranked landing candidates with human-readable explanations of the underlying safety constraints. Across 72 simulated and hardware-in-the-loop landing scenarios, NeuroSymLand achieves 61 successful assessments, outperforming four competitive baselines, which achieve between 37 and 57 successes. Qualitative analysis highlights its superior interpretability and transparent reasoning, while deployment incurs negligible edge overhead. Our results suggest that combining explicit world modeling with symbolic reasoning can support accurate, interpretable, and edge-deployable safety assessment in mobile systems, as demonstrated through UAV landing site assessment.

World Models as an Intermediary between Agents and the Real World 2026-01-31
Show

Large language model (LLM) agents trained using reinforcement learning has achieved superhuman performance in low-cost environments like games, mathematics, and coding. However, these successes have not translated to complex domains where the cost of interaction is high, such as the physical cost of running robots, the time cost of ML engineering, and the resource cost of scientific experiments. The true bottleneck for achieving the next level of agent performance for these complex and high-cost domains lies in the expense of executing actions to acquire reward signals. To address this gap, this paper argues that we should use world models as an intermediary between agents and the real world. We discuss how world models, viewed as models of dynamics, rewards, and task distributions, can overcome fundamental barriers of high-cost actions such as extreme off-policy learning and sample inefficiency in long-horizon tasks. Moreover, we demonstrate how world models can provide critical and rich learning signals to agents across a broad set of domains, including machine learning engineering, computer use, robotics, and AI for science. Lastly, we identify the challenges of building these world models and propose actionable items along dataset curation, architecture design, scaling, and evaluation of world models.

Scalable Generative Game Engine: Breaking the Resolution Wall via Hardware-Algorithm Co-Design 2026-01-31
Show

Real-time generative game engines represent a paradigm shift in interactive simulation, promising to replace traditional graphics pipelines with neural world models. However, existing approaches are fundamentally constrained by the Memory Wall,'' restricting practical deployments to low resolutions (e.g., $64 \times 64$). This paper bridges the gap between generative models and high-resolution neural simulations by introducing a scalable \textit{Hardware-Algorithm Co-Design} framework. We identify that high-resolution generation suffers from a critical resource mismatch: the World Model is compute-bound while the Decoder is memory-bound. To address this, we propose a heterogeneous architecture that intelligently decouples these components across a cluster of AI accelerators. Our system features three core innovations: (1) an asymmetric resource allocation strategy that optimizes throughput under sequence parallelism constraints; (2) a memory-centric operator fusion scheme that minimizes off-chip bandwidth usage; and (3) a manifold-aware latent extrapolation mechanism that exploits temporal redundancy to mask latency. We validate our approach on a cluster of programmable AI accelerators, enabling real-time generation at $720 \times 480$ resolution -- a $50\times$ increase in pixel throughput over prior baselines. Evaluated on both continuous 3D racing and discrete 2D platformer benchmarks, our system delivers fluid 26.4 FPS and 48.3 FPS respectively, with an amortized effective latency of 2.7 ms. This work demonstrates that resolving the Memory Wall'' via architectural co-design is not merely an optimization, but a prerequisite for enabling high-fidelity, responsive neural gameplay.

Prepr...

Preprint, Under Review

NetWorld: Communication-Based Diffusion World Model for Multi-Agent Reinforcement Learning in Wireless Networks 2026-01-31
Show

As wireless communication networks grow in scale and complexity, diverse resource allocation tasks become increasingly critical. Multi-Agent Reinforcement Learning (MARL) provides a promising solution for distributed control, yet it often requires costly real-world interactions and lacks generalization across diverse tasks. Meanwhile, recent advances in Diffusion Models (DMs) have demonstrated strong capabilities in modeling complex dynamics and supporting high-fidelity simulation. Motivated by these challenges and opportunities, we propose a Communication-based Diffusion World Model (NetWorld) to enable few-shot generalization across heterogeneous MARL tasks in wireless networks. To improve applicability to large-scale distributed networks, NetWorld adopts the Distributed Training with Decentralized Execution (DTDE) paradigm and is organized into a two-stage framework: (i) pre-training a classifier-guided conditional diffusion world model on multi-task offline datasets, and (ii) performing trajectory planning entirely within this world model to avoid additional online interaction. Cross-task heterogeneity is handled via shared latent processing for observations, two-hot discretization for task-specific actions and rewards, and an inverse dynamics model for action recovery. We further introduce a lightweight Mean Field (MF) communication mechanism to reduce non-stationarity and promote coordinated behaviors with low overhead. Experiments on three representative tasks demonstrate improved performance and sample efficiency over MARL baselines, indicating strong scalability and practical potential for wireless network optimization.

Parallel Stochastic Gradient-Based Planning for World Models 2026-01-31
Show

World models simulate environment dynamics from raw sensory inputs like video. However, using them for planning can be challenging due to the vast and unstructured search space. We propose a robust and highly parallelizable planner that leverages the differentiability of the learned world model for efficient optimization, solving long-horizon control tasks from visual input. Our method treats states as optimization variables ("virtual states") with soft dynamics constraints, enabling parallel computation and easier optimization. To facilitate exploration and avoid local optima, we introduce stochasticity into the states. To mitigate sensitive gradients through high-dimensional vision-based world models, we modify the gradient structure to descend towards valid plans while only requiring action-input gradients. Our planner, which we call GRASP (Gradient RelAxed Stochastic Planner), can be viewed as a stochastic version of a non-condensed or collocation-based optimal controller. We provide theoretical justification and experiments on video-based world models, where our resulting planner outperforms existing planning algorithms like the cross-entropy method (CEM) and vanilla gradient-based optimization (GD) on long-horizon experiments, both in success rate and time to convergence.

23 pages, 7 figures
DISK: Dynamic Inference SKipping for World Models 2026-01-31
Show

We present DISK, a training-free adaptive inference method for autoregressive world models. DISK coordinates two coupled diffusion transformers for video and ego-trajectory via dual-branch controllers with cross-modal skip decisions, preserving motion-appearance consistency without retraining. We extend higher-order latent-difference skip testing to the autoregressive chain-of-forward regime and propagate controller statistics through rollout loops for long-horizon stability. When integrated into closed-loop driving rollouts on 1500 NuPlan and NuScenes samples using an NVIDIA L40S GPU, DISK achieves 2x speedup on trajectory diffusion and 1.6x speedup on video diffusion while maintaining L2 planning error, visual quality (FID/FVD), and NAVSIM PDMS scores, demonstrating practical long-horizon video-and-trajectory prediction at substantially reduced cost.

Distributional value gradients for stochastic environments 2026-01-30
Show

Gradient-regularized value learning methods improve sample efficiency by leveraging learned models of transition dynamics and rewards to estimate return gradients. However, existing approaches, such as MAGE, struggle in stochastic or noisy environments, limiting their applicability. In this work, we address these limitations by extending distributional reinforcement learning on continuous state-action spaces to model not only the distribution over scalar state-action value functions but also over their gradients. We refer to this approach as Distributional Sobolev Training. Inspired by Stochastic Value Gradients (SVG), our method utilizes a one-step world model of reward and transition distributions implemented via a conditional Variational Autoencoder (cVAE). The proposed framework is sample-based and employs Max-sliced Maximum Mean Discrepancy (MSMMD) to instantiate the distributional Bellman operator. We prove that the Sobolev-augmented Bellman operator is a contraction with a unique fixed point, and highlight a fundamental smoothness trade-off underlying contraction in gradient-aware RL. To validate our method, we first showcase its effectiveness on a simple stochastic reinforcement learning toy problem, then benchmark its performance on several MuJoCo environments.

The Blueprints of Intelligence: A Functional-Topological Foundation for Perception and Representation 2026-01-30
Show

Real-world phenomena do not generate arbitrary variability: their signals concentrate on compact, low-variability subsets of functional space, enabling rapid generalization from few examples. A small child can recognize a dog after extremely limited exposure because the perceptual manifold of "dog" is compact, structured, and low-dimensional. We formalize this principle through a deterministic functional-topological framework in which the set of valid realizations produced by a physical process forms a compact subset of a Banach space, endowed with stable invariants, a finite Hausdorff radius, and an induced continuous perceptual functional. This geometry provides explicit limits on knowledge, conditions for identifiability, and guarantees for generalization from sparse evidence -- properties fundamental to both natural and artificial intelligence. Across electromechanical, electrochemical, and physiological domains, we show that real-world processes consistently generate compact perceptual manifolds with the same geometric characteristics. Their boundaries can be discovered in a fully self-supervised manner as the empirical radius saturates with increasing sampling, even when the governing equations are unknown. These results demonstrate that deterministic functional topology offers a unified mathematical foundation for perception, representation, and world-model construction. It provides a geometric explanation for why biological learners and self-supervised AI systems can generalize from few observations, and establishes compact perceptual manifolds as a fundamental building block for future AI architectures. Finally, this work unifies biological perception and modern self-supervised models under a single geometric principle: both derive their generalization ability from the compactness and invariants of real-world perceptual manifolds.

35 pa...

35 pages, 6 figures. This preprint develops a deterministic functional-topological framework showing that physical systems generate compact perceptual manifolds with finite radius. We provide theory, Monte-Carlo estimators, and validation across PM, battery, and ECG domains, unifying biological perception and self-supervised AI

Test-Time Mixture of World Models for Embodied Agents in Dynamic Environments 2026-01-30
Show

Language model (LM)-based embodied agents are increasingly deployed in real-world settings. Yet, their adaptability remains limited in dynamic environments, where constructing accurate and flexible world models is crucial for effective reasoning and decision-making. To address this challenge, we extend the Mixture-of-Experts (MoE) paradigm to embodied agents. While conventional MoE architectures modularize knowledge into expert components with pre-trained routing, they remain rigid once deployed, making them less effective for adapting to unseen domains in dynamic environments. We therefore propose Test-time Mixture of World Models (TMoW), a framework that enhances adaptability to unseen and evolving domains. TMoW updates its routing function over world models at test time, unlike conventional MoE where the function remains fixed, enabling agents to recombine existing models and integrate new ones for continual adaptation. It achieves this through (i) multi-granular prototype-based routing, which adapts mixtures across object- to scene-level similarities, (ii) test-time refinement that aligns unseen domain features with prototypes during inference, and (iii) distilled mixture-based augmentation, which efficiently constructs new models from few-shot data and existing prototypes. We evaluate TMoW on VirtualHome, ALFWorld, and RLBench benchmarks, demonstrating strong performance in both zero-shot adaptation and few-shot expansion scenarios, and showing that it enables embodied agents to operate effectively in dynamic environments.

Accep...

Accepted at ICLR 2026. 10 pages. Code available at https://github.com/doldam0/tmow

Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models 2026-01-30
Show

Large language models have achieved remarkable success in recent years, primarily due to self-attention. However, traditional Softmax attention suffers from numerical instability and reduced performance as the number of inference tokens increases. This work addresses these issues by proposing a new design principle for attention, viewing it as a two-stage process. The first stage (normalisation) refines standard attention by replacing Softmax with the more numerically stable Softplus followed by $l_{1}$-normalisation. Furthermore, we introduce a dynamic scale factor based on invariance entropy. We show that this novel attention mechanism outperforms conventional Softmax attention, and state-of-the-art Softmax-free alternatives. Our second proposal is to introduce a second processing stage (sharpening) which consists of a re-weighting mechanism that amplifies significant attentional weights while diminishing weaker ones. This enables the model to concentrate more effectively on relevant tokens, mitigating the attention sink phenomenon, and fundamentally improving length extrapolation. This novel, two-stage, replacement for self-attention is shown to ensure numerical stability and dramatically improve length extrapolation, maintaining a nearly constant validation loss at 16$\times$ the training length while achieving superior results on challenging long-context retrieval tasks and downstream benchmarks. Furthermore, symbolic regression experiments demonstrate that our method enables models to recover Newton's gravitational law from orbital trajectory sequences, providing evidence that appropriate attention mechanisms are crucial for foundation models to develop genuine physical world models.

32 pa...

32 pages for ICML 2026

Policy-Driven World Model Adaptation for Robust Offline Model-based Reinforcement Learning 2026-01-30
Show

Offline reinforcement learning (RL) offers a powerful paradigm for data-driven control. Compared to model-free approaches, offline model-based RL (MBRL) explicitly learns a world model from a static dataset and uses it as a surrogate simulator, improving data efficiency and enabling potential generalization beyond the dataset support. However, most existing offline MBRL methods follow a two-stage training procedure: first learning a world model by maximizing the likelihood of the observed transitions, then optimizing a policy to maximize its expected return under the learned model. This objective mismatch results in a world model that is not necessarily optimized for effective policy learning. Moreover, we observe that policies learned via offline MBRL often lack robustness during deployment, and small adversarial noise in the environment can lead to significant performance degradation. To address these, we propose a framework that dynamically adapts the world model alongside the policy under a unified learning objective aimed at improving robustness. At the core of our method is a maximin optimization problem, which we solve by innovatively utilizing Stackelberg learning dynamics. We provide theoretical analysis to support our design and introduce computationally efficient implementations. We benchmark our algorithm on twelve noisy D4RL MuJoCo tasks and three stochastic Tokamak Control tasks, demonstrating its state-of-the-art performance.

Social World Models 2026-01-29
Show

Humans intuitively navigate social interactions by simulating unspoken dynamics and reasoning about others' perspectives, even with limited information. In contrast, AI systems struggle to structure and reason about implicit social contexts, as they lack explicit representations for unobserved dynamics such as intentions, beliefs, and evolving social states. In this paper, we introduce the concept of social world models (SWMs) to characterize the complex social dynamics. To operationalize SWMs, we introduce a novel structured social world representation formalism (S3AP), which captures the evolving states, actions, and mental states of agents, addressing the lack of explicit structure in traditional free-text-based inputs. Through comprehensive experiments across five social reasoning benchmarks, we show that S3AP significantly enhances LLM performance-achieving a +51% improvement on FANToM over OpenAI's o1. Our ablations further reveal that these gains are driven by the explicit modeling of hidden mental states, which proves more effective than a wide range of baseline methods. Finally, we introduce an algorithm for social world models using S3AP, which enables AI agents to build models of their interlocutors and predict their next actions and mental states. Empirically, S3AP-enabled social world models yield up to +18% improvement on the SOTOPIA multi-turn social interaction benchmark. Our findings highlight the promise of S3AP as a powerful, general-purpose representation for social world states, enabling the development of more socially-aware systems that better navigate social interactions.

DynaWeb: Model-Based Reinforcement Learning of Web Agents 2026-01-29
Show

The development of autonomous web agents, powered by Large Language Models (LLMs) and reinforcement learning (RL), represents a significant step towards general-purpose AI assistants. However, training these agents is severely hampered by the challenges of interacting with the live internet, which is inefficient, costly, and fraught with risks. Model-based reinforcement learning (MBRL) offers a promising solution by learning a world model of the environment to enable simulated interaction. This paper introduces DynaWeb, a novel MBRL framework that trains web agents through interacting with a web world model trained to predict naturalistic web page representations given agent actions. This model serves as a synthetic web environment where an agent policy can dream by generating vast quantities of rollout action trajectories for efficient online reinforcement learning. Beyond free policy rollouts, DynaWeb incorporates real expert trajectories from training data, which are randomly interleaved with on-policy rollouts during training to improve stability and sample efficiency. Experiments conducted on the challenging WebArena and WebVoyager benchmarks demonstrate that DynaWeb consistently and significantly improves the performance of state-of-the-art open-source web agent models. Our findings establish the viability of training web agents through imagination, offering a scalable and efficient way to scale up online agentic RL.

World of Workflows: a Benchmark for Bringing World Models to Enterprise Systems 2026-01-29
Show

Frontier large language models (LLMs) excel as autonomous agents in many domains, yet they remain untested in complex enterprise systems where hidden workflows create cascading effects across interconnected databases. Existing enterprise benchmarks evaluate surface-level agentic task completion similar to general consumer benchmarks, ignoring true challenges in enterprises, such as limited observability, large database state, and hidden workflows with cascading side effects. We introduce World of Workflows (WoW), a realistic ServiceNow-based environment incorporating 4,000+ business rules and 55 active workflows embedded in the system, alongside WoW-bench, a benchmark of 234 tasks evaluating constrained agentic task completion and enterprise dynamics modeling capabilities. We reveal two major takeaways: (1) Frontier LLMs suffer from dynamics blindness, consistently failing to predict the invisible, cascading side effects of their actions, which leads to silent constraint violations, and (2) reliability in opaque systems requires grounded world modeling, where agents must mentally simulate hidden state transitions to bridge the observability gap when high-fidelity feedback is unavailable. For reliable and useful enterprise agents, WoW motivates a new paradigm to explicitly learn system dynamics. We release our GitHub for setting up and evaluating WoW.

The Patient is not a Moving Document: A World Model Training Paradigm for Longitudinal EHR 2026-01-29
Show

Large language models (LLMs) trained with next-word-prediction have achieved success as clinical foundation models. Representations from these language backbones yield strong linear probe performance across biomedical tasks, suggesting that patient semantics emerge from next-token prediction at scale. However, this paradigm treats patients as a document to be summarized rather than a dynamical system to be simulated; a patient's trajectory emerges from their state evolving under interventions and time, requiring models that simulate dynamics rather than predict tokens. To address this, we introduce SMB-Structure, a world model for structured EHR that grounds a joint-embedding prediction architecture (JEPA) with next-token prediction (SFT). SFT grounds our model to reconstruct future patient states in token space, while JEPA predicts those futures in latent space from the initial patient representation alone, forcing trajectory dynamics to be encoded before the next state is observed. We validate across two large-scale cohorts: Memorial Sloan Kettering (23,319 oncology patients; 323,000+ patient-years) and INSPECT (19,402 pulmonary embolism patients). Using a linear probe evaluated at multiple points along the disease trajectory, we demonstrate that our training paradigm learns embeddings that capture disease dynamics not recoverable by autoregressive baselines, enabling SMB-Structure to achieve competitive performance on complex tasks characterized by high patient heterogeneity. Model weights are available at https://huggingface.co/standardmodelbio/SMB-v1-1.7B-Structure.

Learning Transient Convective Heat Transfer with Geometry Aware World Models 2026-01-29
Show

Partial differential equation (PDE) simulations are fundamental to engineering and physics but are often computationally prohibitive for real-time applications. While generative AI offers a promising avenue for surrogate modeling, standard video generation architectures lack the specific control and data compatibility required for physical simulations. This paper introduces a geometry aware world model architecture, derived from a video generation architecture (LongVideoGAN), designed to learn transient physics. We introduce two key architecture elements: (1) a twofold conditioning mechanism incorporating global physical parameters and local geometric masks, and (2) an architectural adaptation to support arbitrary channel dimensions, moving beyond standard RGB constraints. We evaluate this approach on a 2D transient computational fluid dynamics (CFD) problem involving convective heat transfer from buoyancy-driven flow coupled to a heat flow in a solid structure. We demonstrate that the conditioned model successfully reproduces complex temporal dynamics and spatial correlations of the training data. Furthermore, we assess the model's generalization capabilities on unseen geometric configurations, highlighting both its potential for controlled simulation synthesis and current limitations in spatial precision for out-of-distribution samples.

36 pa...

36 pages, 18 figures, 2 tables

Drive-JEPA: Video JEPA Meets Multimodal Trajectory Distillation for End-to-End Driving 2026-01-29
Show

End-to-end autonomous driving increasingly leverages self-supervised video pretraining to learn transferable planning representations. However, pretraining video world models for scene understanding has so far brought only limited improvements. This limitation is compounded by the inherent ambiguity of driving: each scene typically provides only a single human trajectory, making it difficult to learn multimodal behaviors. In this work, we propose Drive-JEPA, a framework that integrates Video Joint-Embedding Predictive Architecture (V-JEPA) with multimodal trajectory distillation for end-to-end driving. First, we adapt V-JEPA for end-to-end driving, pretraining a ViT encoder on large-scale driving videos to produce predictive representations aligned with trajectory planning. Second, we introduce a proposal-centric planner that distills diverse simulator-generated trajectories alongside human trajectories, with a momentum-aware selection mechanism to promote stable and safe behavior. When evaluated on NAVSIM, the V-JEPA representation combined with a simple transformer-based decoder outperforms prior methods by 3 PDMS in the perception-free setting. The complete Drive-JEPA framework achieves 93.3 PDMS on v1 and 87.8 EPDMS on v2, setting a new state-of-the-art.

Causal World Modeling for Robot Control 2026-01-29
Show

This work highlights that video world modeling, alongside vision-language pre-training, establishes a fresh and independent foundation for robot learning. Intuitively, video world models provide the ability to imagine the near future by understanding the causality between actions and visual dynamics. Inspired by this, we introduce LingBot-VA, an autoregressive diffusion framework that learns frame prediction and policy execution simultaneously. Our model features three carefully crafted designs: (1) a shared latent space, integrating vision and action tokens, driven by a Mixture-of-Transformers (MoT) architecture, (2) a closed-loop rollout mechanism, allowing for ongoing acquisition of environmental feedback with ground-truth observations, (3) an asynchronous inference pipeline, parallelizing action prediction and motor execution to support efficient control. We evaluate our model on both simulation benchmarks and real-world scenarios, where it shows significant promise in long-horizon manipulation, data efficiency in post-training, and strong generalizability to novel configurations. The code and model are made publicly available to facilitate the community.

Proje...

Project page: https://technology.robbyant.com/lingbot-va Code: https://github.com/robbyant/lingbot-va

WorldLLM: Improving LLMs' world modeling using curiosity-driven theory-making 2026-01-29
Show

Large Language Models (LLMs) possess general world knowledge but often struggle to generate precise predictions in structured, domain-specific contexts such as simulations. These limitations arise from their inability to ground their broad, unstructured understanding in specific environments. To address this, we present WorldLLM, a framework that enhances LLM-based world modeling by combining Bayesian inference and autonomous active exploration with reinforcement learning. WorldLLM leverages the in-context learning abilities of LLMs to guide an LLM-based world model's predictions using natural language hypotheses given in its prompt. These hypotheses are iteratively refined through a Bayesian inference framework that leverages a second LLM as the proposal distribution given collected evidence. This evidence is collected using a curiosity-driven reinforcement learning policy that explores the environment to find transitions with a low log-likelihood under our LLM-based predictive model using the current hypotheses. By alternating between refining hypotheses and collecting new evidence, our framework autonomously drives continual improvement of the predictions. Our experiments demonstrate the effectiveness of WorldLLM in a textual game environment that requires agents to manipulate and combine objects. The framework not only enhances predictive accuracy, but also generates human-interpretable theories of environment dynamics.

This ...

This project's code can be found at https://github.com/flowersteam/WorldLLM. This project was presented at RLDM 2025 (https://rldm.org/)

PathWise: Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs 2026-01-29
Show

Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.

Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining 2026-01-29
Show

A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA

Accep...

Accepted by ICLR 2025

Learning Physics-Grounded 4D Dynamics with Neural Gaussian Force Fields 2026-01-29
Show

Predicting physical dynamics from raw visual data remains a major challenge in AI. While recent video generation models have achieved impressive visual quality, they still cannot consistently generate physically plausible videos due to a lack of modeling of physical laws. Recent approaches combining 3D Gaussian splatting and physics engines can produce physically plausible videos, but are hindered by high computational costs in both reconstruction and simulation, and often lack robustness in complex real-world scenarios. To address these issues, we introduce Neural Gaussian Force Field (NGFF), an end-to-end neural framework that integrates 3D Gaussian perception with physics-based dynamic modeling to generate interactive, physically realistic 4D videos from multi-view RGB inputs, achieving two orders of magnitude faster than prior Gaussian simulators. To support training, we also present GSCollision, a 4D Gaussian dataset featuring diverse materials, multi-object interactions, and complex scenes, totaling over 640k rendered physical videos (~4 TB). Evaluations on synthetic and real 3D scenarios show NGFF's strong generalization and robustness in physical reasoning, advancing video prediction towards physics-grounded world models.

43 pages, ICLR 2026
Towards Bridging the Gap between Large-Scale Pretraining and Efficient Finetuning for Humanoid Control 2026-01-29
Show

Reinforcement learning (RL) is widely used for humanoid control, with on-policy methods such as Proximal Policy Optimization (PPO) enabling robust training via large-scale parallel simulation and, in some cases, zero-shot deployment to real robots. However, the low sample efficiency of on-policy algorithms limits safe adaptation to new environments. Although off-policy RL and model-based RL have shown improved sample efficiency, the gap between large-scale pretraining and efficient finetuning on humanoids still exists. In this paper, we find that off-policy Soft Actor-Critic (SAC), with large-batch update and a high Update-To-Data (UTD) ratio, reliably supports large-scale pretraining of humanoid locomotion policies, achieving zero-shot deployment on real robots. For adaptation, we demonstrate that these SAC-pretrained policies can be finetuned in new environments and out-of-distribution tasks using model-based methods. Data collection in the new environment executes a deterministic policy while stochastic exploration is instead confined to a physics-informed world model. This separation mitigates the risks of random exploration during adaptation while preserving exploratory coverage for improvement. Overall, the approach couples the wall-clock efficiency of large-scale simulation during pretraining with the sample efficiency of model-based learning during fine-tuning.

ICLR 2026
WorldBench: Disambiguating Physics for Diagnostic Evaluation of World Models 2026-01-29
Show

Recent advances in generative foundational models, often termed "world models," have propelled interest in applying them to critical tasks like robotic planning and autonomous system training. For reliable deployment, these models must exhibit high physical fidelity, accurately simulating real-world dynamics. Existing physics-based video benchmarks, however, suffer from entanglement, where a single test simultaneously evaluates multiple physical laws and concepts, fundamentally limiting their diagnostic capability. We introduce WorldBench, a novel video-based benchmark specifically designed for concept-specific, disentangled evaluation, allowing us to rigorously isolate and assess understanding of a single physical concept or law at a time. To make WorldBench comprehensive, we design benchmarks at two different levels: 1) an evaluation of intuitive physical understanding with concepts such as object permanence or scale/perspective, and 2) an evaluation of low-level physical constants and material properties such as friction coefficients or fluid viscosity. When SOTA video-based world models are evaluated on WorldBench, we find specific patterns of failure in particular physics concepts, with all tested models lacking the physical consistency required to generate reliable real-world interactions. Through its concept-specific evaluation, WorldBench offers a more nuanced and scalable framework for rigorously evaluating the physical reasoning capabilities of video generation and world models, paving the way for more robust and generalizable world-model-driven learning.

Webpa...

Webpage: https://world-bench.github.io/

LLMs versus the Halting Problem: Revisiting Program Termination Prediction 2026-01-29
Show

Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.

SkyReels-V3 Technique Report 2026-01-29
Show

Video generation serves as a cornerstone for building world models, where multimodal contextual inference stands as the defining test of capability. In this end, we present SkyReels-V3, a conditional video generation model, built upon a unified multimodal in-context learning framework with diffusion Transformers. SkyReels-V3 model supports three core generative paradigms within a single architecture: reference images-to-video synthesis, video-to-video extension and audio-guided video generation. (i) reference images-to-video model is designed to produce high-fidelity videos with strong subject identity preservation, temporal coherence, and narrative consistency. To enhance reference adherence and compositional stability, we design a comprehensive data processing pipeline that leverages cross frame pairing, image editing, and semantic rewriting, effectively mitigating copy paste artifacts. During training, an image video hybrid strategy combined with multi-resolution joint optimization is employed to improve generalization and robustness across diverse scenarios. (ii) video extension model integrates spatio-temporal consistency modeling with large-scale video understanding, enabling both seamless single-shot continuation and intelligent multi-shot switching with professional cinematographic patterns. (iii) Talking avatar model supports minute-level audio-conditioned video generation by training first-and-last frame insertion patterns and reconstructing key-frame inference paradigms. On the basis of ensuring visual quality, synchronization of audio and videos has been optimized. Extensive evaluations demonstrate that SkyReels-V3 achieves state-of-the-art or near state-of-the-art performance on key metrics including visual quality, instruction following, and specific aspect metrics, approaching leading closed-source systems. Github: https://github.com/SkyworkAI/SkyReels-V3.

Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting 2026-01-29
Show

We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.

12 pages, 11 figures
Deep SPI: Safe Policy Improvement via World Models 2026-01-28
Show

Safe policy improvement (SPI) offers theoretical control over policy updates, yet existing guarantees largely concern offline, tabular reinforcement learning (RL). We study SPI in general online settings, when combined with world model and representation learning. We develop a theoretical framework showing that restricting policy updates to a well-defined neighborhood of the current policy ensures monotonic improvement and convergence. This analysis links transition and reward prediction losses to representation quality, yielding online, "deep" analogues of classical SPI theorems from the offline RL literature. Building on these results, we introduce DeepSPI, a principled on-policy algorithm that couples local transition and reward losses with regularised policy updates. On the ALE-57 benchmark, DeepSPI matches or exceeds strong baselines, including PPO and DeepMDPs, while retaining theoretical guarantees.

ICLR ...

ICLR 2026, 10 pages main text, 21 pages appendix (excluding references)

Advancing Open-source World Models 2026-01-28
Show

We present LingBot-World, an open-sourced world simulator stemming from video generation. Positioned as a top-tier world model, LingBot-World offers the following features. (1) It maintains high fidelity and robust dynamics in a broad spectrum of environments, including realism, scientific contexts, cartoon styles, and beyond. (2) It enables a minute-level horizon while preserving contextual consistency over time, which is also known as "long-term memory". (3) It supports real-time interactivity, achieving a latency of under 1 second when producing 16 frames per second. We provide public access to the code and model in an effort to narrow the divide between open-source and closed-source technologies. We believe our release will empower the community with practical applications across areas like content creation, gaming, and robot learning.

Proje...

Project page: https://technology.robbyant.com/lingbot-world; Code: https://github.com/robbyant/lingbot-world

HARMONI: Multimodal Personalization of Multi-User Human-Robot Interactions with LLMs 2026-01-27
Show

Existing human-robot interaction systems often lack mechanisms for sustained personalization and dynamic adaptation in multi-user environments, limiting their effectiveness in real-world deployments. We present HARMONI, a multimodal personalization framework that leverages large language models to enable socially assistive robots to manage long-term multi-user interactions. The framework integrates four key modules: (i) a perception module that identifies active speakers and extracts multimodal input; (ii) a world modeling module that maintains representations of the environment and short-term conversational context; (iii) a user modeling module that updates long-term speaker-specific profiles; and (iv) a generation module that produces contextually grounded and ethically informed responses. Through extensive evaluation and ablation studies on four datasets, as well as a real-world scenario-driven user-study in a nursing home environment, we demonstrate that HARMONI supports robust speaker identification, online memory updating, and ethically aligned personalization, outperforming baseline LLM-driven approaches in user modeling accuracy, personalization quality, and user satisfaction.

Visual Generation Unlocks Human-Like Reasoning through Multimodal World Models 2026-01-27
Show

Humans construct internal world models and reason by manipulating the concepts within these models. Recent advances in AI, particularly chain-of-thought (CoT) reasoning, approximate such human cognitive abilities, where world models are believed to be embedded within large language models. Expert-level performance in formal and abstract domains such as mathematics and programming has been achieved in current systems by relying predominantly on verbal reasoning. However, they still lag far behind humans in domains like physical and spatial intelligence, which require richer representations and prior knowledge. The emergence of unified multimodal models (UMMs) capable of both verbal and visual generation has therefore sparked interest in more human-like reasoning grounded in complementary multimodal pathways, though their benefits remain unclear. From a world-model perspective, this paper presents the first principled study of when and how visual generation benefits reasoning. Our key position is the visual superiority hypothesis: for certain tasks--particularly those grounded in the physical world--visual generation more naturally serves as world models, whereas purely verbal world models encounter bottlenecks arising from representational limitations or insufficient prior knowledge. Theoretically, we formalize internal world modeling as a core component of CoT reasoning and analyze distinctions among different forms of world models. Empirically, we identify tasks that necessitate interleaved visual-verbal CoT reasoning, constructing a new evaluation suite, VisWorld-Eval. Controlled experiments on a state-of-the-art UMM show that interleaved CoT significantly outperforms purely verbal CoT on tasks that favor visual world modeling, but offers no clear advantage otherwise. Together, this work clarifies the potential of multimodal world modeling for more powerful, human-like multimodal AI.

Proje...

Project page: https://thuml.github.io/Reasoning-Visual-World

Agentic Design Patterns: A System-Theoretic Framework 2026-01-27
Show

With the development of foundation model (FM), agentic AI systems are getting more attention, yet their inherent issues like hallucination and poor reasoning, coupled with the frequent ad-hoc nature of system design, lead to unreliable and brittle applications. Existing efforts to characterise agentic design patterns often lack a rigorous systems-theoretic foundation, resulting in high-level or convenience-based taxonomies that are difficult to implement. This paper addresses this gap by introducing a principled methodology for engineering robust AI agents. We propose two primary contributions: first, a novel system-theoretic framework that deconstructs an agentic AI system into five core, interacting functional subsystems: Reasoning & World Model, Perception & Grounding, Action Execution, Learning & Adaptation, and Inter-Agent Communication. Second, derived from this architecture and directly mapped to a comprehensive taxonomy of agentic challenges, we present a collection of 12 agentic design patterns. These patterns - categorised as Foundational, Cognitive & Decisional, Execution & Interaction, and Adaptive & Learning - offer reusable, structural solutions to recurring problems in agent design. The utility of the framework is demonstrated by a case study on the ReAct framework, showing how the proposed patterns can rectify systemic architectural deficiencies. This work provides a foundational language and a structured methodology to standardise agentic design communication among researchers and engineers, leading to more modular, understandable, and reliable autonomous systems.

Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning 2026-01-27
Show

Offline reinforcement learning (RL) is a powerful approach for data-driven decision-making and control. Compared to model-free methods, offline model-based reinforcement learning (MBRL) explicitly learns world models from a static dataset and uses them as surrogate simulators, improving the data efficiency and enabling the learned policy to potentially generalize beyond the dataset support. However, there could be various MDPs that behave identically on the offline dataset and dealing with the uncertainty about the true MDP can be challenging. In this paper, we propose modeling offline MBRL as a Bayes Adaptive Markov Decision Process (BAMDP), which is a principled framework for addressing model uncertainty. We further propose a novel Bayes Adaptive Monte-Carlo planning algorithm capable of solving BAMDPs in continuous state and action spaces with stochastic transitions. This planning process is based on Monte Carlo Tree Search and can be integrated into offline MBRL as a policy improvement operator in policy iteration. Our "RL + Search" framework follows in the footsteps of superhuman AIs like AlphaZero, improving on current offline MBRL methods by incorporating more computation input. The proposed algorithm significantly outperforms state-of-the-art offline RL methods on twelve D4RL MuJoCo tasks and three challenging, stochastic tokamak control tasks. The codebase is available at: https://github.com/LucasCJYSDL/Offline-RL-Kit.

This ...

This paper is accepted in ICLR 2026

Dynamic Worlds, Dynamic Humans: Generating Virtual Human-Scene Interaction Motion in Dynamic Scenes 2026-01-27
Show

Scenes are continuously undergoing dynamic changes in the real world. However, existing human-scene interaction generation methods typically treat the scene as static, which deviates from reality. Inspired by world models, we introduce Dyn-HSI, the first cognitive architecture for dynamic human-scene interaction, which endows virtual humans with three humanoid components. (1)Vision (human eyes): we equip the virtual human with a Dynamic Scene-Aware Navigation, which continuously perceives changes in the surrounding environment and adaptively predicts the next waypoint. (2)Memory (human brain): we equip the virtual human with a Hierarchical Experience Memory, which stores and updates experiential data accumulated during training. This allows the model to leverage prior knowledge during inference for context-aware motion priming, thereby enhancing both motion quality and generalization. (3) Control (human body): we equip the virtual human with Human-Scene Interaction Diffusion Model, which generates high-fidelity interaction motions conditioned on multimodal inputs. To evaluate performance in dynamic scenes, we extend the existing static human-scene interaction datasets to construct a dynamic benchmark, Dyn-Scenes. We conduct extensive qualitative and quantitative experiments to validate Dyn-HSI, showing that our method consistently outperforms existing approaches and generates high-quality human-scene interaction motions in both static and dynamic settings.

From Observations to Events: Event-Aware World Model for Reinforcement Learning 2026-01-27
Show

While model-based reinforcement learning (MBRL) improves sample efficiency by learning world models from raw observations, existing methods struggle to generalize across structurally similar scenes and remain vulnerable to spurious variations such as textures or color shifts. From a cognitive science perspective, humans segment continuous sensory streams into discrete events and rely on these key events for decision-making. Motivated by this principle, we propose the Event-Aware World Model (EAWM), a general framework that learns event-aware representations to streamline policy learning without requiring handcrafted labels. EAWM employs an automated event generator to derive events from raw observations and introduces a Generic Event Segmentor (GES) to identify event boundaries, which mark the start and end time of event segments. Through event prediction, the representation space is shaped to capture meaningful spatio-temporal transitions. Beyond this, we present a unified formulation of seemingly distinct world model architectures and show the broad applicability of our methods. Experiments on Atari 100K, Craftax 1M, and DeepMind Control 500K, DMC-GB2 500K demonstrate that EAWM consistently boosts the performance of strong MBRL baselines by 10%-45%, setting new state-of-the-art results across benchmarks. Our code is released at https://github.com/MarquisDarwin/EAWM.

43 pa...

43 pages, accepted by ICLR 2026

Astra: General Interactive World Model with Autoregressive Denoising 2026-01-27
Show

Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.

Accep...

Accepted in ICLR 2026. Code is available at: https://github.com/EternalEvan/Astra

Generalized Spherical Neural Operators: Green's Function Formulation 2026-01-26
Show

Neural operators offer powerful approaches for solving parametric partial differential equations, but extending them to spherical domains remains challenging due to the need to preserve intrinsic geometry while avoiding distortions that break rotational consistency. Existing spherical operators rely on rotational equivariance but often lack the flexibility for real-world complexity. We propose a generalized operator-design framework based on the designable spherical Green's function and its harmonic expansion, establishing a solid operator-theoretic foundation for spherical learning. Based on this, we propose an absolute and relative position-dependent Green's function that enables flexible balance of equivariance and invariance for real-world modeling. The resulting operator, Green's-function Spherical Neural Operator (GSNO) with a novel spectral learning method, can adapt to non-equivariant systems while retaining spectral efficiency and grid invariance. To exploit GSNO, we develop SHNet, a hierarchical architecture that combines multi-scale spectral modeling with spherical up-down sampling, enhancing global feature representation. Evaluations on diffusion MRI, shallow water dynamics, and global weather forecasting, GSNO and SHNet consistently outperform state-of-the-art methods. The theoretical and experimental results position GSNO as a principled and generalized framework for spherical operator design and learning, bridging rigorous theory with real-world complexity.

CASSANDRA: Programmatic and Probabilistic Learning and Inference for Stochastic World Modeling 2026-01-26
Show

Building world models is essential for planning in real-world domains such as businesses. Since such domains have rich semantics, we can leverage world knowledge to effectively model complex action effects and causal relationships from limited data. In this work, we propose CASSANDRA, a neurosymbolic world modeling approach that leverages an LLM as a knowledge prior to construct lightweight transition models for planning. CASSANDRA integrates two components: (1) LLM-synthesized code to model deterministic features, and (2) LLM-guided structure learning of a probabilistic graphical model to capture causal relationships among stochastic variables. We evaluate CASSANDRA in (i) a small-scale coffee-shop simulator and (ii) a complex theme park business simulator, where we demonstrate significant improvements in transition prediction and planning over baselines.

28 pages, 2 figures

Visual SLAM

Title Date Abstract Comment
Real-Time Loop Closure Detection in Visual SLAM via NetVLAD and Faiss 2026-02-02
Show

Loop closure detection (LCD) is a core component of simultaneous localization and mapping (SLAM): it identifies revisited places and enables pose-graph constraints that correct accumulated drift. Classic bag-of-words approaches such as DBoW are efficient but often degrade under appearance change and perceptual aliasing. In parallel, deep learning-based visual place recognition (VPR) descriptors (e.g., NetVLAD and Transformer-based models) offer stronger robustness, but their computational cost is often viewed as a barrier to real-time SLAM. In this paper, we empirically evaluate NetVLAD as an LCD module and compare it against DBoW on the KITTI dataset. We introduce a Fine-Grained Top-K precision-recall curve that better reflects LCD settings where a query may have zero or multiple valid matches. With Faiss-accelerated nearestneighbor search, NetVLAD achieves real-time query speed while improving accuracy and robustness over DBoW, making it a practical drop-in alternative for LCD in SLAM.

SCE-SLAM: Scale-Consistent Monocular SLAM via Scene Coordinate Embeddings 2026-01-14
Show

Monocular visual SLAM enables 3D reconstruction from internet video and autonomous navigation on resource-constrained platforms, yet suffers from scale drift, i.e., the gradual divergence of estimated scale over long sequences. Existing frame-to-frame methods achieve real-time performance through local optimization but accumulate scale drift due to the lack of global constraints among independent windows. To address this, we propose SCE-SLAM, an end-to-end SLAM system that maintains scale consistency through scene coordinate embeddings, which are learned patch-level representations encoding 3D geometric relationships under a canonical scale reference. The framework consists of two key modules: geometry-guided aggregation that leverages 3D spatial proximity to propagate scale information from historical observations through geometry-modulated attention, and scene coordinate bundle adjustment that anchors current estimates to the reference scale through explicit 3D coordinate constraints decoded from the scene coordinate embeddings. Experiments on KITTI, Waymo, and vKITTI demonstrate substantial improvements: our method reduces absolute trajectory error by 8.36m on KITTI compared to the best prior approach, while maintaining 36 FPS and achieving scale consistency across large-scale scenes.

VPGS-SLAM: Voxel-based Progressive 3D Gaussian SLAM in Large-Scale Scenes 2026-01-10
Show

3D Gaussian Splatting has recently shown promising results in dense visual SLAM. However, existing 3DGS-based SLAM methods are all constrained to small-room scenarios and struggle with memory explosion in large-scale scenes and long sequences. To this end, we propose VPGS-SLAM, the first 3DGS-based large-scale RGBD SLAM framework for both indoor and outdoor scenarios. We design a novel voxel-based progressive 3D Gaussian mapping method with multiple submaps for compact and accurate scene representation in large-scale and long-sequence scenes. This allows us to scale up to arbitrary scenes and improves robustness (even under pose drifts). In addition, we propose a 2D-3D fusion camera tracking method to achieve robust and accurate camera tracking in both indoor and outdoor large-scale scenes. Furthermore, we design a 2D-3D Gaussian loop closure method to eliminate pose drift. We further propose a submap fusion method with online distillation to achieve global consistency in large-scale scenes when detecting a loop. Experiments on various indoor and outdoor datasets demonstrate the superiority and generalizability of the proposed framework. The code will be open source on https://github.com/dtc111111/vpgs-slam.

ViSTA-SLAM: Visual SLAM with Symmetric Two-view Association 2026-01-06
Show

We present ViSTA-SLAM as a real-time monocular visual SLAM system that operates without requiring camera intrinsics, making it broadly applicable across diverse camera setups. At its core, the system employs a lightweight symmetric two-view association (STA) model as the frontend, which simultaneously estimates relative camera poses and regresses local pointmaps from only two RGB images. This design reduces model complexity significantly, the size of our frontend is only 35% that of comparable state-of-the-art methods, while enhancing the quality of two-view constraints used in the pipeline. In the backend, we construct a specially designed Sim(3) pose graph that incorporates loop closures to address accumulated drift. Extensive experiments demonstrate that our approach achieves superior performance in both camera tracking and dense 3D reconstruction quality compared to current methods. Github repository: https://github.com/zhangganlin/vista-slam

Accep...

Accepted by 3DV 2026, project page: https://ganlinzhang.xyz/vista-slam/

Loop Closure using AnyLoc Visual Place Recognition in DPV-SLAM 2026-01-06
Show

Loop closure is crucial for maintaining the accuracy and consistency of visual SLAM. We propose a method to improve loop closure performance in DPV-SLAM. Our approach integrates AnyLoc, a learning-based visual place recognition technique, as a replacement for the classical Bag of Visual Words (BoVW) loop detection method. In contrast to BoVW, which relies on handcrafted features, AnyLoc utilizes deep feature representations, enabling more robust image retrieval across diverse viewpoints and lighting conditions. Furthermore, we propose an adaptive mechanism that dynamically adjusts similarity threshold based on environmental conditions, removing the need for manual tuning. Experiments on both indoor and outdoor datasets demonstrate that our method significantly outperforms the original DPV-SLAM in terms of loop closure accuracy and robustness. The proposed method offers a practical and scalable solution for enhancing loop closure performance in modern SLAM systems.

Accep...

Accepted at IEEE/SICE International Symposium on System Integration(SII) 2026. 6 pages, 14 figures

FoundationSLAM: Unleashing the Power of Depth Foundation Models for End-to-End Dense Visual SLAM 2026-01-01
Show

We present FoundationSLAM, a learning-based monocular dense SLAM system that addresses the absence of geometric consistency in previous flow-based approaches for accurate and robust tracking and mapping. Our core idea is to bridge flow estimation with geometric reasoning by leveraging the guidance from foundation depth models. To this end, we first develop a Hybrid Flow Network that produces geometry-aware correspondences, enabling consistent depth and pose inference across diverse keyframes. To enforce global consistency, we propose a Bi-Consistent Bundle Adjustment Layer that jointly optimizes keyframe pose and depth under multi-view constraints. Furthermore, we introduce a Reliability-Aware Refinement mechanism that dynamically adapts the flow update process by distinguishing between reliable and uncertain regions, forming a closed feedback loop between matching and optimization. Extensive experiments demonstrate that FoundationSLAM achieves superior trajectory accuracy and dense reconstruction quality across multiple challenging datasets, while running in real-time at 18 FPS, demonstrating strong generalization to various scenarios and practical applicability of our method.

Accep...

Accept at AAAI 2026 (Oral)

Spatia: Video Generation with Updatable Spatial Memory 2025-12-17
Show

Existing video generation models struggle to maintain long-term spatial and temporal consistency due to the dense, high-dimensional nature of video signals. To overcome this limitation, we propose Spatia, a spatial memory-aware video generation framework that explicitly preserves a 3D scene point cloud as persistent spatial memory. Spatia iteratively generates video clips conditioned on this spatial memory and continuously updates it through visual SLAM. This dynamic-static disentanglement design enhances spatial consistency throughout the generation process while preserving the model's ability to produce realistic dynamic entities. Furthermore, Spatia enables applications such as explicit camera control and 3D-aware interactive editing, providing a geometrically grounded framework for scalable, memory-driven video generation.

Proje...

Project page: https://zhaojingjing713.github.io/Spatia/

Deep Learning Perspective of Scene Understanding in Autonomous Robots 2025-12-16
Show

This paper provides a review of deep learning applications in scene understanding in autonomous robots, including innovations in object detection, semantic and instance segmentation, depth estimation, 3D reconstruction, and visual SLAM. It emphasizes how these techniques address limitations of traditional geometric models, improve depth perception in real time despite occlusions and textureless surfaces, and enhance semantic reasoning to understand the environment better. When these perception modules are integrated into dynamic and unstructured environments, they become more effective in decisionmaking, navigation and interaction. Lastly, the review outlines the existing problems and research directions to advance learning-based scene understanding of autonomous robots.

11 pa...

11 pages. Review Paper on Deep Learning Perspective of Scene Understanding in Autonomous Robots

Dynamic Visual SLAM using a General 3D Prior 2025-12-07
Show

Reliable incremental estimation of camera poses and 3D reconstruction is key to enable various applications including robotics, interactive visualization, and augmented reality. However, this task is particularly challenging in dynamic natural environments, where scene dynamics can severely deteriorate camera pose estimation accuracy. In this work, we propose a novel monocular visual SLAM system that can robustly estimate camera poses in dynamic scenes. To this end, we leverage the complementary strengths of geometric patch-based online bundle adjustment and recent feed-forward reconstruction models. Specifically, we propose a feed-forward reconstruction model to precisely filter out dynamic regions, while also utilizing its depth prediction to enhance the robustness of the patch-based visual SLAM. By aligning depth prediction with estimated patches from bundle adjustment, we robustly handle the inherent scale ambiguities of the batch-wise application of the feed-forward reconstruction model.

8 pages
DPVO-QAT++: Heterogeneous QAT and CUDA Kernel Fusion for High-Performance Deep Patch Visual Odometry 2025-11-16
Show

Deep learning-based Visual SLAM (vSLAM) systems exhibit exceptional geometric reasoning capabilities, yet their prohibitive computational overhead severely restricts deployment on resource-constrained autonomous platforms. This paper presents a hierarchical quantization optimization framework, DPVO-QAT++ (DPVO-QAT++: Heterogeneous QAT and CUDA Kernel Fusion for High-Performance Deep Patch Visual Odometry). Through the synergistic integration of learnable scale parameterization, a heterogeneous precision design for the Visual Odometry (VO) front-end and back-end (front-end floating-point fake quantization with FP16/FP32; back-end full precision), and GPU-native kernel fusion for fake quantization (custom CUDA kernels), our framework significantly reduces memory footprint and increases processing speed while preserving the trajectory accuracy of the original model. On the TartanAir dataset, our framework achieves an average FPS increase of 52.1%, a 29.1% reduction in median latency, and a 64.9% reduction in peak GPU memory reservation, while maintaining trajectory accuracy (ATE) comparable to the original DPVO model across 32 validation sequences. On the EuRoC dataset, it realizes an average FPS increase of 30.1%, a 23.1% reduction in median latency, and a 37.7% reduction in peak GPU memory reservation, maintaining comparable trajectory accuracy (ATE) across 11 validation sequences. Experimental results demonstrate that DPVO-QAT++ effectively bridges the gap between high-precision deep VO and the efficiency requirements for practical deployment, offering a viable engineering paradigm for the application of this technology on real-world embedded platforms. Keywords: Visual Odometry, Heterogeneous Precision Architecture, Quantization-Aware Training, CUDA Kernel Fusion, Scale-Only Training, Deep Patch Visual Odometry, GPU-Native Kernel Fusion.

MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM 2025-11-16
Show

Visual SLAM is a cornerstone technique in robotics, autonomous driving and extended reality (XR), yet classical systems often struggle with low-texture environments, scale ambiguity, and degraded performance under challenging visual conditions. Recent advancements in feed-forward neural network-based pointmap regression have demonstrated the potential to recover high-fidelity 3D scene geometry directly from images, leveraging learned spatial priors to overcome limitations of traditional multi-view geometry methods. However, the widely validated advantages of probabilistic multi-sensor information fusion are often discarded in these pipelines. In this work, we propose MASt3R-Fusion,a multi-sensor-assisted visual SLAM framework that tightly integrates feed-forward pointmap regression with complementary sensor information, including inertial measurements and GNSS data. The system introduces Sim(3)-based visualalignment constraints (in the Hessian form) into a universal metric-scale SE(3) factor graph for effective information fusion. A hierarchical factor graph design is developed, which allows both real-time sliding-window optimization and global optimization with aggressive loop closures, enabling real-time pose tracking, metric-scale structure perception and globally consistent mapping. We evaluate our approach on both public benchmarks and self-collected datasets, demonstrating substantial improvements in accuracy and robustness over existing visual-centered multi-sensor SLAM systems. The code will be released open-source to support reproducibility and further research (https://github.com/GREAT-WHU/MASt3R-Fusion).

vS-Graphs: Tightly Coupling Visual SLAM and 3D Scene Graphs Exploiting Hierarchical Scene Understanding 2025-11-12
Show

Current Visual Simultaneous Localization and Mapping (VSLAM) systems often struggle to create maps that are both semantically rich and easily interpretable. While incorporating semantic scene knowledge aids in building richer maps with contextual associations among mapped objects, representing them in structured formats, such as scene graphs, has not been widely addressed, resulting in complex map comprehension and limited scalability. This paper introduces vS-Graphs, a novel real-time VSLAM framework that integrates vision-based scene understanding with map reconstruction and comprehensible graph-based representation. The framework infers structural elements (i.e., rooms and floors) from detected building components (i.e., walls and ground surfaces) and incorporates them into optimizable 3D scene graphs. This solution enhances the reconstructed map's semantic richness, comprehensibility, and localization accuracy. Extensive experiments on standard benchmarks and real-world datasets demonstrate that vS-Graphs achieves an average of 15.22% accuracy gain across all tested datasets compared to state-of-the-art VSLAM methods. Furthermore, the proposed framework achieves environment-driven semantic entity detection accuracy comparable to that of precise LiDAR-based frameworks, using only visual features. The code is publicly available at https://github.com/snt-arg/visual_sgraphs and is actively being improved. Moreover, a web page containing more media and evaluation outcomes is available on https://snt-arg.github.io/vsgraphs-results/.

19 pa...

19 pages, 10 figures, 5 tables

UMIGen: A Unified Framework for Egocentric Point Cloud Generation and Cross-Embodiment Robotic Imitation Learning 2025-11-12
Show

Data-driven robotic learning faces an obvious dilemma: robust policies demand large-scale, high-quality demonstration data, yet collecting such data remains a major challenge owing to high operational costs, dependence on specialized hardware, and the limited spatial generalization capability of current methods. The Universal Manipulation Interface (UMI) relaxes the strict hardware requirements for data collection, but it is restricted to capturing only RGB images of a scene and omits the 3D geometric information on which many tasks rely. Inspired by DemoGen, we propose UMIGen, a unified framework that consists of two key components: (1) Cloud-UMI, a handheld data collection device that requires no visual SLAM and simultaneously records point cloud observation-action pairs; and (2) a visibility-aware optimization mechanism that extends the DemoGen pipeline to egocentric 3D observations by generating only points within the camera's field of view. These two components enable efficient data generation that aligns with real egocentric observations and can be directly transferred across different robot embodiments without any post-processing. Experiments in both simulated and real-world settings demonstrate that UMIGen supports strong cross-embodiment generalization and accelerates data collection in diverse manipulation tasks.

Integration of Visual SLAM into Consumer-Grade Automotive Localization 2025-11-10
Show

Accurate ego-motion estimation in consumer-grade vehicles currently relies on proprioceptive sensors, i.e. wheel odometry and IMUs, whose performance is limited by systematic errors and calibration. While visual-inertial SLAM has become a standard in robotics, its integration into automotive ego-motion estimation remains largely unexplored. This paper investigates how visual SLAM can be integrated into consumer-grade vehicle localization systems to improve performance. We propose a framework that fuses visual SLAM with a lateral vehicle dynamics model to achieve online gyroscope calibration under realistic driving conditions. Experimental results demonstrate that vision-based integration significantly improves gyroscope calibration accuracy and thus enhances overall localization performance, highlighting a promising path toward higher automotive localization accuracy. We provide results on both proprietary and public datasets, showing improved performance and superior localization accuracy on a public benchmark compared to state-of-the-art methods.

This ...

This manuscript has been submitted to the IEEE for possible publication

Multi-cam Multi-map Visual Inertial Localization: System, Validation and Dataset 2025-11-08
Show

Robot control loops require causal pose estimates that depend only on past and present measurements. At each timestep, controllers compute commands using the current pose without waiting for future refinements. While traditional visual SLAM systems achieve high accuracy through retrospective loop closures, these corrections arrive after control decisions were already executed, violating causality. Visual-inertial odometry maintains causality but accumulates unbounded drift over time. To address the distinct requirements of robot control, we propose a multi-camera multi-map visual-inertial localization system providing real-time, causal pose estimation with bounded localization error through continuous map constraints. Since standard trajectory metrics evaluate post-processed trajectories, we analyze the error composition of map-based localization systems and propose a set of evaluation metrics suitable for measuring causal localization performance. To validate our system, we design a multi-camera IMU hardware setup and collect a challenging long-term campus dataset featuring diverse illumination and seasonal conditions. Experimental results on public benchmarks and on our own collected dataset demonstrate that our system provides significantly higher real-time localization accuracy compared to other methods. To benefit the community, we have made both the system and the dataset open source at https://anonymous.4open.science/r/Multi-cam-Multi-map-VILO-7993.

TurboMap: GPU-Accelerated Local Mapping for Visual SLAM 2025-11-03
Show

This paper presents TurboMap, a GPU-accelerated and CPU-optimized local mapping module for visual SLAM systems. We identify key performance bottlenecks in the local mapping process for visual SLAM and address them through targeted GPU and CPU optimizations. Specifically, we offload map point triangulation and fusion to the GPU, accelerate redundant keyframe culling on the CPU, and integrate a GPU-accelerated solver to speed up local bundle adjustment. Our implementation is built on top of ORB-SLAM3 and leverages CUDA for GPU programming. The experimental results show that TurboMap achieves an average speedup of 1.3x in the EuRoC dataset and 1.6x in the TUM-VI dataset in the local mapping module, on both desktop and embedded platforms, while maintaining the accuracy of the original system.

Submi...

Submitted to ICRA 2026

Loop Closure from Two Views: Revisiting PGO for Scalable Trajectory Estimation through Monocular Priors 2025-10-30
Show

(Visual) Simultaneous Localization and Mapping (SLAM) remains a fundamental challenge in enabling autonomous systems to navigate and understand large-scale environments. Traditional SLAM approaches struggle to balance efficiency and accuracy, particularly in large-scale settings where extensive computational resources are required for scene reconstruction and Bundle Adjustment (BA). However, this scene reconstruction, in the form of sparse pointclouds of visual landmarks, is often only used within the SLAM system because navigation and planning methods require different map representations. In this work, we therefore investigate a more scalable Visual SLAM (VSLAM) approach without reconstruction, mainly based on approaches for two-view loop closures. By restricting the map to a sparse keyframed pose graph without dense geometry representations, our `2GO' system achieves efficient optimization with competitive absolute trajectory accuracy. In particular, we find that recent advancements in image matching and monocular depth priors enable very accurate trajectory optimization without BA. We conduct extensive experiments on diverse datasets, including large-scale scenarios, and provide a detailed analysis of the trade-offs between runtime, accuracy, and map size. Our results demonstrate that this streamlined approach supports real-time performance, scales well in map size and trajectory duration, and effectively broadens the capabilities of VSLAM for long-duration deployments to large environments.

Deep Learning-Powered Visual SLAM Aimed at Assisting Visually Impaired Navigation 2025-10-23
Show

Despite advancements in SLAM technologies, robust operation under challenging conditions such as low-texture, motion-blur, or challenging lighting remains an open challenge. Such conditions are common in applications such as assistive navigation for the visually impaired. These challenges undermine localization accuracy and tracking stability, reducing navigation reliability and safety. To overcome these limitations, we present SELM-SLAM3, a deep learning-enhanced visual SLAM framework that integrates SuperPoint and LightGlue for robust feature extraction and matching. We evaluated our framework using TUM RGB-D, ICL-NUIM, and TartanAir datasets, which feature diverse and challenging scenarios. SELM-SLAM3 outperforms conventional ORB-SLAM3 by an average of 87.84% and exceeds state-of-the-art RGB-D SLAM systems by 36.77%. Our framework demonstrates enhanced performance under challenging conditions, such as low-texture scenes and fast motion, providing a reliable platform for developing navigation aids for the visually impaired.

8 pag...

8 pages, 7 figures, 4 tables

VAR-SLAM: Visual Adaptive and Robust SLAM for Dynamic Environments 2025-10-17
Show

Visual SLAM in dynamic environments remains challenging, as several existing methods rely on semantic filtering that only handles known object classes, or use fixed robust kernels that cannot adapt to unknown moving objects, leading to degraded accuracy when they appear in the scene. We present VAR-SLAM (Visual Adaptive and Robust SLAM), an ORB-SLAM3-based system that combines a lightweight semantic keypoint filter to deal with known moving objects, with Barron's adaptive robust loss to handle unknown ones. The shape parameter of the robust kernel is estimated online from residuals, allowing the system to automatically adjust between Gaussian and heavy-tailed behavior. We evaluate VAR-SLAM on the TUM RGB-D, Bonn RGB-D Dynamic, and OpenLORIS datasets, which include both known and unknown moving objects. Results show improved trajectory accuracy and robustness over state-of-the-art baselines, achieving up to 25% lower ATE RMSE than NGD-SLAM on challenging sequences, while maintaining performance at 27 FPS on average.

Code ...

Code available at https://github.com/iit-DLSLab/VAR-SLAM

Accelerated Feature Detectors for Visual SLAM: A Comparative Study of FPGA vs GPU 2025-10-15
Show

Feature detection is a common yet time-consuming module in Simultaneous Localization and Mapping (SLAM) implementations, which are increasingly deployed on power-constrained platforms, such as drones. Graphics Processing Units (GPUs) have been a popular accelerator for computer vision in general, and feature detection and SLAM in particular. On the other hand, System-on-Chips (SoCs) with integrated Field Programmable Gate Array (FPGA) are also widely available. This paper presents the first study of hardware-accelerated feature detectors considering a Visual SLAM (V-SLAM) pipeline. We offer new insights by comparing the best GPU-accelerated FAST, Harris, and SuperPoint implementations against the FPGA-accelerated counterparts on modern SoCs (Nvidia Jetson Orin and AMD Versal). The evaluation shows that when using a non-learning-based feature detector such as FAST and Harris, their GPU implementations, and the GPU-accelerated V-SLAM can achieve better run-time performance and energy efficiency than the FAST and Harris FPGA implementations as well as the FPGA-accelerated V-SLAM. However, when considering a learning-based detector such as SuperPoint, its FPGA implementation can achieve better run-time performance and energy efficiency (up to 3.1$\times$ and 1.4$\times$ improvements, respectively) than the GPU implementation. The FPGA-accelerated V-SLAM can also achieve comparable run-time performance compared to the GPU-accelerated V-SLAM, with better FPS in 2 out of 5 dataset sequences. When considering the accuracy, the results show that the GPU-accelerated V-SLAM is more accurate than the FPGA-accelerated V-SLAM in general. Last but not least, the use of hardware acceleration for feature detection could further improve the performance of the V-SLAM pipeline by having the global bundle adjustment module invoked less frequently without sacrificing accuracy.

12 pages, 7 figures
SMapper: A Multi-Modal Data Acquisition Platform for SLAM Benchmarking 2025-10-10
Show

Advancing research in fields such as Simultaneous Localization and Mapping (SLAM) and autonomous navigation critically depends on the availability of reliable and reproducible multimodal datasets. While several influential datasets have driven progress in these domains, they often suffer from limitations in sensing modalities, environmental diversity, and the reproducibility of the underlying hardware setups. To address these challenges, this paper introduces SMapper, a novel open-hardware, multi-sensor platform designed explicitly for, though not limited to, SLAM research. The device integrates synchronized LiDAR, multi-camera, and inertial sensing, supported by a robust calibration and synchronization pipeline that ensures precise spatio-temporal alignment across modalities. Its open and replicable design allows researchers to extend its capabilities and reproduce experiments across both handheld and robot-mounted scenarios. To demonstrate its practicality, we additionally release SMapper-light, a publicly available SLAM dataset containing representative indoor and outdoor sequences. The dataset includes tightly synchronized multimodal data and ground truth trajectories derived from offline LiDAR-based SLAM with sub-centimeter accuracy, alongside dense 3D reconstructions. Furthermore, the paper contains benchmarking results on state-of-the-art LiDAR and visual SLAM frameworks using the SMapper-light dataset. By combining open-hardware design, reproducible data collection, and comprehensive benchmarking, SMapper establishes a robust foundation for advancing SLAM algorithm development, evaluation, and reproducibility. The project's documentation, including source code, CAD models, and dataset links, is publicly available at https://snt-arg.github.io/smapper_docs.

13 pa...

13 pages, 5 figures, 6 tables

EgoExo++: Integrating On-demand Exocentric Visuals with 2.5D Ground Surface Estimation for Interactive Teleoperation of Subsea ROVs 2025-10-08
Show

Underwater ROVs (Remotely Operated Vehicles) are indispensable for subsea exploration and task execution, yet typical teleoperation engines based on egocentric (first-person) video feeds restrict human operators' field-of-view and limit precise maneuvering in complex, unstructured underwater environments. To address this, we propose EgoExo, a geometry-driven solution integrated into a visual SLAM pipeline that synthesizes on-demand exocentric (third-person) views from egocentric camera feeds. Our proposed framework, EgoExo++, extends beyond 2D exocentric view synthesis (EgoExo) to augment a dense 2.5D ground surface estimation on-the-fly. It simultaneously renders the ROV model onto this reconstructed surface, enhancing semantic perception and depth comprehension. The computations involved are closed-form and rely solely on egocentric views and monocular SLAM estimates, which makes it portable across existing teleoperation engines and robust to varying waterbody characteristics. We validate the geometric accuracy of our approach through extensive experiments of 2-DOF indoor navigation and 6-DOF underwater cave exploration in challenging low-light conditions. Quantitative metrics confirm the reliability of the rendered Exo views, while a user study involving 15 operators demonstrates improved situational awareness, navigation safety, and task efficiency during teleoperation. Furthermore, we highlight the role of EgoExo++ augmented visuals in supporting shared autonomy, operator training, and embodied teleoperation. This new interactive approach to ROV teleoperation presents promising opportunities for future research in subsea telerobotics.

EgoEx...

EgoExo++ (Journal extension), V5, metadata updated, 12 pages

BIM Informed Visual SLAM for Construction Monitoring 2025-10-08
Show

Simultaneous Localization and Mapping (SLAM) is a key tool for monitoring construction sites, where aligning the evolving as-built state with the as-planned design enables early error detection and reduces costly rework. LiDAR-based SLAM achieves high geometric precision, but its sensors are typically large and power-demanding, limiting their use on portable platforms. Visual SLAM offers a practical alternative with lightweight cameras already embedded in most mobile devices. however, visually mapping construction environments remains challenging: repetitive layouts, occlusions, and incomplete or low-texture structures often cause drift in the trajectory map. To mitigate this, we propose an RGB-D SLAM system that incorporates the Building Information Model (BIM) as structural prior knowledge. Instead of relying solely on visual cues, our system continuously establishes correspondences between detected wall and their BIM counterparts, which are then introduced as constraints in the back-end optimization. The proposed method operates in real time and has been validated on real construction sites, reducing trajectory error by an average of 23.71% and map RMSE by 7.14% compared to visual SLAM baselines. These results demonstrate that BIM constraints enable reliable alignment of the digital plan with the as-built scene, even under partially constructed conditions.

8 pag...

8 pages, 5 tables, 4 figures

RSV-SLAM: Toward Real-Time Semantic Visual SLAM in Indoor Dynamic Environments 2025-10-02
Show

Simultaneous Localization and Mapping (SLAM) plays an important role in many robotics fields, including social robots. Many of the available visual SLAM methods are based on the assumption of a static world and struggle in dynamic environments. In the current study, we introduce a real-time semantic RGBD SLAM approach designed specifically for dynamic environments. Our proposed system can effectively detect moving objects and maintain a static map to ensure robust camera tracking. The key innovation of our approach is the incorporation of deep learning-based semantic information into SLAM systems to mitigate the impact of dynamic objects. Additionally, we enhance the semantic segmentation process by integrating an Extended Kalman filter to identify dynamic objects that may be temporarily idle. We have also implemented a generative network to fill in the missing regions of input images belonging to dynamic objects. This highly modular framework has been implemented on the ROS platform and can achieve around 22 fps on a GTX1080. Benchmarking the developed pipeline on dynamic sequences from the TUM dataset suggests that the proposed approach delivers competitive localization error in comparison with the state-of-the-art methods, all while operating in near real-time. The source code is publicly available.

Proce...

Proceedings of SAI Intelligent Systems Conference 2023

Instant4D: 4D Gaussian Splatting in Minutes 2025-10-01
Show

Dynamic view synthesis has seen significant advances, yet reconstructing scenes from uncalibrated, casual video remains challenging due to slow optimization and complex parameter estimation. In this work, we present Instant4D, a monocular reconstruction system that leverages native 4D representation to efficiently process casual video sequences within minutes, without calibrated cameras or depth sensors. Our method begins with geometric recovery through deep visual SLAM, followed by grid pruning to optimize scene representation. Our design significantly reduces redundancy while maintaining geometric integrity, cutting model size to under 10% of its original footprint. To handle temporal dynamics efficiently, we introduce a streamlined 4D Gaussian representation, achieving a 30x speed-up and reducing training time to within two minutes, while maintaining competitive performance across several benchmarks. Our method reconstruct a single video within 10 minutes on the Dycheck dataset or for a typical 200-frame video. We further apply our model to in-the-wild videos, showcasing its generalizability. Our project website is published at https://instant4d.github.io/.

Accep...

Accepted by NeurIPS 25

Semantic Visual Simultaneous Localization and Mapping: A Survey on State of the Art, Challenges, and Future Directions 2025-10-01
Show

Semantic Simultaneous Localization and Mapping (SLAM) is a critical area of research within robotics and computer vision, focusing on the simultaneous localization of robotic systems and associating semantic information to construct the most accurate and complete comprehensive model of the surrounding environment. Since the first foundational work in Semantic SLAM appeared more than two decades ago, this field has received increasing attention across various scientific communities. Despite its significance, the field lacks comprehensive surveys encompassing recent advances and persistent challenges. In response, this study provides a thorough examination of the state-of-the-art of Semantic SLAM techniques, with the aim of illuminating current trends and key obstacles. Beginning with an in-depth exploration of the evolution of visual SLAM, this study outlines its strengths and unique characteristics, while also critically assessing previous survey literature. Subsequently, a unified problem formulation and evaluation of the modular solution framework is proposed, which divides the problem into discrete stages, including visual localization, semantic feature extraction, mapping, data association, and loop closure optimization. Moreover, this study investigates alternative methodologies such as deep learning and the utilization of large language models, alongside a review of relevant research about contemporary SLAM datasets. Concluding with a discussion on potential future research directions, this study serves as a comprehensive resource for researchers seeking to navigate the complex landscape of Semantic SLAM.

SuperEvent: Cross-Modal Learning of Event-based Keypoint Detection for SLAM 2025-09-29
Show

Event-based keypoint detection and matching holds significant potential, enabling the integration of event sensors into highly optimized Visual SLAM systems developed for frame cameras over decades of research. Unfortunately, existing approaches struggle with the motion-dependent appearance of keypoints and the complex noise prevalent in event streams, resulting in severely limited feature matching capabilities and poor performance on downstream tasks. To mitigate this problem, we propose SuperEvent, a data-driven approach to predict stable keypoints with expressive descriptors. Due to the absence of event datasets with ground truth keypoint labels, we leverage existing frame-based keypoint detectors on readily available event-aligned and synchronized gray-scale frames for self-supervision: we generate temporally sparse keypoint pseudo-labels considering that events are a product of both scene appearance and camera motion. Combined with our novel, information-rich event representation, we enable SuperEvent to effectively learn robust keypoint detection and description in event streams. Finally, we demonstrate the usefulness of SuperEvent by its integration into a modern sparse keypoint and descriptor-based SLAM framework originally developed for traditional cameras, surpassing the state-of-the-art in event-based SLAM by a wide margin. Source code is available at https://ethz-mrl.github.io/SuperEvent/.

GRS-SLAM3R: Real-Time Dense SLAM with Gated Recurrent State 2025-09-28
Show

DUSt3R-based end-to-end scene reconstruction has recently shown promising results in dense visual SLAM. However, most existing methods only use image pairs to estimate pointmaps, overlooking spatial memory and global consistency.To this end, we introduce GRS-SLAM3R, an end-to-end SLAM framework for dense scene reconstruction and pose estimation from RGB images without any prior knowledge of the scene or camera parameters. Unlike existing DUSt3R-based frameworks, which operate on all image pairs and predict per-pair point maps in local coordinate frames, our method supports sequentialized input and incrementally estimates metric-scale point clouds in the global coordinate. In order to improve consistent spatial correlation, we use a latent state for spatial memory and design a transformer-based gated update module to reset and update the spatial memory that continuously aggregates and tracks relevant 3D information across frames. Furthermore, we partition the scene into submaps, apply local alignment within each submap, and register all submaps into a common world frame using relative constraints, producing a globally consistent map. Experiments on various datasets show that our framework achieves superior reconstruction accuracy while maintaining real-time performance.

Good Weights: Proactive, Adaptive Dead Reckoning Fusion for Continuous and Robust Visual SLAM 2025-09-26
Show

Given that Visual SLAM relies on appearance cues for localization and scene understanding, texture-less or visually degraded environments (e.g., plain walls or low lighting) lead to poor pose estimation and track loss. However, robots are typically equipped with sensors that provide some form of dead reckoning odometry with reasonable short-time performance but unreliable long-time performance. The Good Weights (GW) algorithm described here provides a framework to adaptively integrate dead reckoning (DR) with passive visual SLAM for continuous and accurate frame-level pose estimation. Importantly, it describes how all modules in a comprehensive SLAM system must be modified to incorporate DR into its design. Adaptive weighting increases DR influence when visual tracking is unreliable and reduces when visual feature information is strong, maintaining pose track without overreliance on DR. Good Weights yields a practical solution for mobile navigation that improves visual SLAM performance and robustness. Experiments on collected datasets and in real-world deployment demonstrate the benefits of Good Weights.

8 pag...

8 pages, 9 figures, 1 table. Submitted to IEEE Conference

Optical Ocean Recipes: Creating Realistic Datasets to Facilitate Underwater Vision Research 2025-09-24
Show

The development and evaluation of machine vision in underwater environments remains challenging, often relying on trial-and-error-based testing tailored to specific applications. This is partly due to the lack of controlled, ground-truthed testing environments that account for the optical challenges, such as color distortion from spectrally variant light attenuation, reduced contrast and blur from backscatter and volume scattering, and dynamic light patterns from natural or artificial illumination. Additionally, the appearance of ocean water in images varies significantly across regions, depths, and seasons. However, most machine vision evaluations are conducted under specific optical water types and imaging conditions, therefore often lack generalizability. Exhaustive testing across diverse open-water scenarios is technically impractical. To address this, we introduce the \textit{Optical Ocean Recipes}, a framework for creating realistic datasets under controlled underwater conditions. Unlike synthetic or open-water data, these recipes, using calibrated color and scattering additives, enable repeatable and controlled testing of the impact of water composition on image appearance. Hence, this provides a unique framework for analyzing machine vision in realistic, yet controlled underwater scenarios. The controlled environment enables the creation of ground-truth data for a range of vision tasks, including water parameter estimation, image restoration, segmentation, visual SLAM, and underwater image synthesis. We provide a demonstration dataset generated using the Optical Ocean Recipes and briefly demonstrate the use of our system for two underwater vision tasks. The dataset and evaluation code will be made available.

26 pa...

26 pages, 9 figures, submitted to IEEE Journal of Ocean Engineering

ConfidentSplat: Confidence-Weighted Depth Fusion for Accurate 3D Gaussian Splatting SLAM 2025-09-21
Show

We introduce ConfidentSplat, a novel 3D Gaussian Splatting (3DGS)-based SLAM system for robust, highfidelity RGB-only reconstruction. Addressing geometric inaccuracies in existing RGB-only 3DGS SLAM methods that stem from unreliable depth estimation, ConfidentSplat incorporates a core innovation: a confidence-weighted fusion mechanism. This mechanism adaptively integrates depth cues from multiview geometry with learned monocular priors (Omnidata ViT), dynamically weighting their contributions based on explicit reliability estimates-derived predominantly from multi-view geometric consistency-to generate high-fidelity proxy depth for map supervision. The resulting proxy depth guides the optimization of a deformable 3DGS map, which efficiently adapts online to maintain global consistency following pose updates from a DROID-SLAM-inspired frontend and backend optimizations (loop closure, global bundle adjustment). Extensive validation on standard benchmarks (TUM-RGBD, ScanNet) and diverse custom mobile datasets demonstrates significant improvements in reconstruction accuracy (L1 depth error) and novel view synthesis fidelity (PSNR, SSIM, LPIPS) over baselines, particularly in challenging conditions. ConfidentSplat underscores the efficacy of principled, confidence-aware sensor fusion for advancing state-of-the-art dense visual SLAM.

FastTrack: GPU-Accelerated Tracking for Visual SLAM 2025-09-13
Show

The tracking module of a visual-inertial SLAM system processes incoming image frames and IMU data to estimate the position of the frame in relation to the map. It is important for the tracking to complete in a timely manner for each frame to avoid poor localization or tracking loss. We therefore present a new approach which leverages GPU computing power to accelerate time-consuming components of tracking in order to improve its performance. These components include stereo feature matching and local map tracking. We implement our design inside the ORB-SLAM3 tracking process using CUDA. Our evaluation demonstrates an overall improvement in tracking performance of up to 2.8x on a desktop and Jetson Xavier NX board in stereo-inertial mode, using the well-known SLAM datasets EuRoC and TUM-VI.

Accep...

Accepted for presentation at IROS 2025, preprint

PINGS: Gaussian Splatting Meets Distance Fields within a Point-Based Implicit Neural Map 2025-09-09
Show

Robots benefit from high-fidelity reconstructions of their environment, which should be geometrically accurate and photorealistic to support downstream tasks. While this can be achieved by building distance fields from range sensors and radiance fields from cameras, realising scalable incremental mapping of both fields consistently and at the same time with high quality is challenging. In this paper, we propose a novel map representation that unifies a continuous signed distance field and a Gaussian splatting radiance field within an elastic and compact point-based implicit neural map. By enforcing geometric consistency between these fields, we achieve mutual improvements by exploiting both modalities. We present a novel LiDAR-visual SLAM system called PINGS using the proposed map representation and evaluate it on several challenging large-scale datasets. Experimental results demonstrate that PINGS can incrementally build globally consistent distance and radiance fields encoded with a compact set of neural points. Compared to state-of-the-art methods, PINGS achieves superior photometric and geometric rendering at novel views by constraining the radiance field with the distance field. Furthermore, by utilizing dense photometric cues and multi-view consistency from the radiance field, PINGS produces more accurate distance fields, leading to improved odometry estimation and mesh reconstruction. We also provide an open-source implementation of PING at: https://github.com/PRBonn/PINGS.

15 pa...

15 pages, 8 figures, presented at RSS 2025

Active Illumination for Visual Ego-Motion Estimation in the Dark 2025-09-08
Show

Visual Odometry (VO) and Visual SLAM (V-SLAM) systems often struggle in low-light and dark environments due to the lack of robust visual features. In this paper, we propose a novel active illumination framework to enhance the performance of VO and V-SLAM algorithms in these challenging conditions. The developed approach dynamically controls a moving light source to illuminate highly textured areas, thereby improving feature extraction and tracking. Specifically, a detector block, which incorporates a deep learning-based enhancing network, identifies regions with relevant features. Then, a pan-tilt controller is responsible for guiding the light beam toward these areas, so that to provide information-rich images to the ego-motion estimation algorithm. Experimental results on a real robotic platform demonstrate the effectiveness of the proposed method, showing a reduction in the pose estimation error up to 75% with respect to a traditional fixed lighting technique.

FGO-SLAM: Enhancing Gaussian SLAM with Globally Consistent Opacity Radiance Field 2025-09-01
Show

Visual SLAM has regained attention due to its ability to provide perceptual capabilities and simulation test data for Embodied AI. However, traditional SLAM methods struggle to meet the demands of high-quality scene reconstruction, and Gaussian SLAM systems, despite their rapid rendering and high-quality mapping capabilities, lack effective pose optimization methods and face challenges in geometric reconstruction. To address these issues, we introduce FGO-SLAM, a Gaussian SLAM system that employs an opacity radiance field as the scene representation to enhance geometric mapping performance. After initial pose estimation, we apply global adjustment to optimize camera poses and sparse point cloud, ensuring robust tracking of our approach. Additionally, we maintain a globally consistent opacity radiance field based on 3D Gaussians and introduce depth distortion and normal consistency terms to refine the scene representation. Furthermore, after constructing tetrahedral grids, we identify level sets to directly extract surfaces from 3D Gaussians. Results across various real-world and large-scale synthetic datasets demonstrate that our method achieves state-of-the-art tracking accuracy and mapping performance.

ICRA 2025
DyPho-SLAM : Real-time Photorealistic SLAM in Dynamic Environments 2025-08-31
Show

Visual SLAM algorithms have been enhanced through the exploration of Gaussian Splatting representations, particularly in generating high-fidelity dense maps. While existing methods perform reliably in static environments, they often encounter camera tracking drift and fuzzy mapping when dealing with the disturbances caused by moving objects. This paper presents DyPho-SLAM, a real-time, resource-efficient visual SLAM system designed to address the challenges of localization and photorealistic mapping in environments with dynamic objects. Specifically, the proposed system integrates prior image information to generate refined masks, effectively minimizing noise from mask misjudgment. Additionally, to enhance constraints for optimization after removing dynamic obstacles, we devise adaptive feature extraction strategies significantly improving the system's resilience. Experiments conducted on publicly dynamic RGB-D datasets demonstrate that the proposed system achieves state-of-the-art performance in camera pose estimation and dense map reconstruction, while operating in real-time in dynamic scenes.

Accep...

Accepted by ICME 2025(Oral)

Survey on Monocular Metric Depth Estimation 2025-08-26
Show

Monocular Depth Estimation (MDE) enables spatial understanding, 3D reconstruction, and autonomous navigation, yet deep learning approaches often predict only relative depth without a consistent metric scale. This limitation reduces reliability in applications such as visual SLAM, precise 3D modeling, and view synthesis. Monocular Metric Depth Estimation (MMDE) overcomes this challenge by producing depth maps with absolute scale, ensuring geometric consistency and enabling deployment without additional calibration. This survey reviews the evolution of MMDE, from geometry-based methods to state-of-the-art deep models, with emphasis on the datasets that drive progress. Key benchmarks, including KITTI, NYU-D, ApolloScape, and TartanAir, are examined in terms of modality, scene type, and application domain. Methodological advances are analyzed, covering domain generalization, boundary preservation, and the integration of synthetic and real data. Techniques such as unsupervised and semi-supervised learning, patch-based inference, architectural innovations, and generative modeling are evaluated for their strengths and limitations. By synthesizing current progress, highlighting the importance of high-quality datasets, and identifying open challenges, this survey provides a structured reference for advancing MMDE and supporting its adoption in real-world computer vision systems.

MCN-SLAM: Multi-Agent Collaborative Neural SLAM with Hybrid Implicit Neural Scene Representation 2025-08-19
Show

Neural implicit scene representations have recently shown promising results in dense visual SLAM. However, existing implicit SLAM algorithms are constrained to single-agent scenarios, and fall difficulties in large-scale scenes and long sequences. Existing NeRF-based multi-agent SLAM frameworks cannot meet the constraints of communication bandwidth. To this end, we propose the first distributed multi-agent collaborative neural SLAM framework with hybrid scene representation, distributed camera tracking, intra-to-inter loop closure, and online distillation for multiple submap fusion. A novel triplane-grid joint scene representation method is proposed to improve scene reconstruction. A novel intra-to-inter loop closure method is designed to achieve local (single-agent) and global (multi-agent) consistency. We also design a novel online distillation method to fuse the information of different submaps to achieve global consistency. Furthermore, to the best of our knowledge, there is no real-world dataset for NeRF-based/GS-based SLAM that provides both continuous-time trajectories groundtruth and high-accuracy 3D meshes groundtruth. To this end, we propose the first real-world Dense slam (DES) dataset covering both single-agent and multi-agent scenarios, ranging from small rooms to large-scale outdoor scenes, with high-accuracy ground truth for both 3D mesh and continuous-time camera trajectory. This dataset can advance the development of the research in both SLAM, 3D reconstruction, and visual foundation model. Experiments on various datasets demonstrate the superiority of the proposed method in both mapping, tracking, and communication. The dataset and code will open-source on https://github.com/dtc111111/mcnslam.

Pseudo Depth Meets Gaussian: A Feed-forward RGB SLAM Baseline 2025-08-06
Show

Incrementally recovering real-sized 3D geometry from a pose-free RGB stream is a challenging task in 3D reconstruction, requiring minimal assumptions on input data. Existing methods can be broadly categorized into end-to-end and visual SLAM-based approaches, both of which either struggle with long sequences or depend on slow test-time optimization and depth sensors. To address this, we first integrate a depth estimator into an RGB-D SLAM system, but this approach is hindered by inaccurate geometric details in predicted depth. Through further investigation, we find that 3D Gaussian mapping can effectively solve this problem. Building on this, we propose an online 3D reconstruction method using 3D Gaussian-based SLAM, combined with a feed-forward recurrent prediction module to directly infer camera pose from optical flow. This approach replaces slow test-time optimization with fast network inference, significantly improving tracking speed. Additionally, we introduce a local graph rendering technique to enhance robustness in feed-forward pose prediction. Experimental results on the Replica and TUM-RGBD datasets, along with a real-world deployment demonstration, show that our method achieves performance on par with the state-of-the-art SplaTAM, while reducing tracking time by more than 90%.

IROS 2025
pySLAM: An Open-Source, Modular, and Extensible Framework for SLAM 2025-08-02
Show

pySLAM is an open-source Python framework for Visual SLAM that supports monocular, stereo, and RGB-D camera inputs. It offers a flexible and modular interface, integrating a broad range of both classical and learning-based local features. The framework includes multiple loop closure strategies, a volumetric reconstruction pipeline, and support for depth prediction models. It also offers a comprehensive set of tools for experimenting with and evaluating visual odometry and SLAM modules. Designed for both beginners and experienced researchers, pySLAM emphasizes rapid prototyping, extensibility, and reproducibility across diverse datasets. Its modular architecture facilitates the integration of custom components and encourages research that bridges traditional and deep learning-based approaches. Community contributions are welcome, fostering collaborative development and innovation in the field of Visual SLAM. This document presents the pySLAM framework, outlining its main components, features, and usage.

Lost in Tracking Translation: A Comprehensive Analysis of Visual SLAM in Human-Centered XR and IoT Ecosystems 2025-07-17
Show

Advancements in tracking algorithms have empowered nascent applications across various domains, from steering autonomous vehicles to guiding robots to enhancing augmented reality experiences for users. However, these algorithms are application-specific and do not work across applications with different types of motion; even a tracking algorithm designed for a given application does not work in scenarios deviating from highly standard conditions. For example, a tracking algorithm designed for robot navigation inside a building will not work for tracking the same robot in an outdoor environment. To demonstrate this problem, we evaluate the performance of the state-of-the-art tracking methods across various applications and scenarios. To inform our analysis, we first categorize algorithmic, environmental, and locomotion-related challenges faced by tracking algorithms. We quantitatively evaluate the performance using multiple tracking algorithms and representative datasets for a wide range of Internet of Things (IoT) and Extended Reality (XR) applications, including autonomous vehicles, drones, and humans. Our analysis shows that no tracking algorithm works across different applications and scenarios within applications. Ultimately, using the insights generated from our analysis, we discuss multiple approaches to improving the tracking performance using input data characterization, leveraging intermediate information, and output evaluation.

DINO-VO: A Feature-based Visual Odometry Leveraging a Visual Foundation Model 2025-07-17
Show

Learning-based monocular visual odometry (VO) poses robustness, generalization, and efficiency challenges in robotics. Recent advances in visual foundation models, such as DINOv2, have improved robustness and generalization in various vision tasks, yet their integration in VO remains limited due to coarse feature granularity. In this paper, we present DINO-VO, a feature-based VO system leveraging DINOv2 visual foundation model for its sparse feature matching. To address the integration challenge, we propose a salient keypoints detector tailored to DINOv2's coarse features. Furthermore, we complement DINOv2's robust-semantic features with fine-grained geometric features, resulting in more localizable representations. Finally, a transformer-based matcher and differentiable pose estimation layer enable precise camera motion estimation by learning good matches. Against prior detector-descriptor networks like SuperPoint, DINO-VO demonstrates greater robustness in challenging environments. Furthermore, we show superior accuracy and generalization of the proposed feature descriptors against standalone DINOv2 coarse features. DINO-VO outperforms prior frame-to-frame VO methods on the TartanAir and KITTI datasets and is competitive on EuRoC dataset, while running efficiently at 72 FPS with less than 1GB of memory usage on a single GPU. Moreover, it performs competitively against Visual SLAM systems on outdoor driving scenarios, showcasing its generalization capabilities.

8 pag...

8 pages, 6 figures. Accepted for publication in IEEE Robotics and Automation Letters (RA-L), July 2025

FLAF: Focal Line and Feature-constrained Active View Planning for Visual Teach and Repeat 2025-07-15
Show

This paper presents FLAF, a focal line and feature-constrained active view planning method for tracking failure avoidance in feature-based visual navigation of mobile robots. Our FLAF-based visual navigation is built upon a feature-based visual teach and repeat (VT&R) framework, which supports many robotic applications by teaching a robot to navigate on various paths that cover a significant portion of daily autonomous navigation requirements. However, tracking failure in feature-based visual simultaneous localization and mapping (VSLAM) caused by textureless regions in human-made environments is still limiting VT&R to be adopted in the real world. To address this problem, the proposed view planner is integrated into a feature-based visual SLAM system to build up an active VT&R system that avoids tracking failure. In our system, a pan-tilt unit (PTU)-based active camera is mounted on the mobile robot. Using FLAF, the active camera-based VSLAM operates during the teaching phase to construct a complete path map and in the repeat phase to maintain stable localization. FLAF orients the robot toward more map points to avoid mapping failures during path learning and toward more feature-identifiable map points beneficial for localization while following the learned trajectory. Experiments in real scenarios demonstrate that FLAF outperforms the methods that do not consider feature-identifiability, and our active VT&R system performs well in complex environments by effectively dealing with low-texture regions.

IRAF-SLAM: An Illumination-Robust and Adaptive Feature-Culling Front-End for Visual SLAM in Challenging Environments 2025-07-10
Show

Robust Visual SLAM (vSLAM) is essential for autonomous systems operating in real-world environments, where challenges such as dynamic objects, low texture, and critically, varying illumination conditions often degrade performance. Existing feature-based SLAM systems rely on fixed front-end parameters, making them vulnerable to sudden lighting changes and unstable feature tracking. To address these challenges, we propose ``IRAF-SLAM'', an Illumination-Robust and Adaptive Feature-Culling front-end designed to enhance vSLAM resilience in complex and challenging environments. Our approach introduces: (1) an image enhancement scheme to preprocess and adjust image quality under varying lighting conditions; (2) an adaptive feature extraction mechanism that dynamically adjusts detection sensitivity based on image entropy, pixel intensity, and gradient analysis; and (3) a feature culling strategy that filters out unreliable feature points using density distribution analysis and a lighting impact factor. Comprehensive evaluations on the TUM-VI and European Robotics Challenge (EuRoC) datasets demonstrate that IRAF-SLAM significantly reduces tracking failures and achieves superior trajectory accuracy compared to state-of-the-art vSLAM methods under adverse illumination conditions. These results highlight the effectiveness of adaptive front-end strategies in improving vSLAM robustness without incurring significant computational overhead. The implementation of IRAF-SLAM is publicly available at https://thanhnguyencanh. github.io/IRAF-SLAM/.

In th...

In the European Conference on Mobile Robots 2025

ROVER: A Multi-Season Dataset for Visual SLAM 2025-07-09
Show

Robust SLAM is a crucial enabler for autonomous navigation in natural, semi-structured environments such as parks and gardens. However, these environments present unique challenges for SLAM due to frequent seasonal changes, varying light conditions, and dense vegetation. These factors often degrade the performance of visual SLAM algorithms originally developed for structured urban environments. To address this gap, we present ROVER, a comprehensive benchmark dataset tailored for evaluating visual SLAM algorithms under diverse environmental conditions and spatial configurations. We captured the dataset with a robotic platform equipped with monocular, stereo, and RGBD cameras, as well as inertial sensors. It covers 39 recordings across five outdoor locations, collected through all seasons and various lighting scenarios, i.e., day, dusk, and night with and without external lighting. With this novel dataset, we evaluate several traditional and deep learning-based SLAM methods and study their performance in diverse challenging conditions. The results demonstrate that while stereo-inertial and RGBD configurations generally perform better under favorable lighting and moderate vegetation, most SLAM systems perform poorly in low-light and high-vegetation scenarios, particularly during summer and autumn. Our analysis highlights the need for improved adaptability in visual SLAM algorithms for outdoor applications, as current systems struggle with dynamic environmental factors affecting scale, feature extraction, and trajectory consistency. This dataset provides a solid foundation for advancing visual SLAM research in real-world, semi-structured environments, fostering the development of more resilient SLAM systems for long-term outdoor localization and mapping. The dataset and the code of the benchmark are available under https://iis-esslingen.github.io/rover.

Copyr...

Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Real-Time Obstacle Avoidance Algorithms for Unmanned Aerial and Ground Vehicles 2025-06-25
Show

The growing use of mobile robots in sectors such as automotive, agriculture, and rescue operations reflects progress in robotics and autonomy. In unmanned aerial vehicles (UAVs), most research emphasizes visual SLAM, sensor fusion, and path planning. However, applying UAVs to search and rescue missions in disaster zones remains underexplored, especially for autonomous navigation. This report develops methods for real-time and secure UAV maneuvering in complex 3D environments, crucial during forest fires. Building upon past research, it focuses on designing navigation algorithms for unfamiliar and hazardous environments, aiming to improve rescue efficiency and safety through UAV-based early warning and rapid response. The work unfolds in phases. First, a 2D fusion navigation strategy is explored, initially for mobile robots, enabling safe movement in dynamic settings. This sets the stage for advanced features such as adaptive obstacle handling and decision-making enhancements. Next, a novel 3D reactive navigation strategy is introduced for collision-free movement in forest fire simulations, addressing the unique challenges of UAV operations in such scenarios. Finally, the report proposes a unified control approach that integrates UAVs and unmanned ground vehicles (UGVs) for coordinated rescue missions in forest environments. Each phase presents challenges, proposes control models, and validates them with mathematical and simulation-based evidence. The study offers practical value and academic insights for improving the role of UAVs in natural disaster rescue operations.

Neural Graph Map: Dense Mapping with Efficient Loop Closure Integration 2025-06-25
Show

Neural field-based SLAM methods typically employ a single, monolithic field as their scene representation. This prevents efficient incorporation of loop closure constraints and limits scalability. To address these shortcomings, we propose a novel RGB-D neural mapping framework in which the scene is represented by a collection of lightweight neural fields which are dynamically anchored to the pose graph of a sparse visual SLAM system. Our approach shows the ability to integrate large-scale loop closures, while requiring only minimal reintegration. Furthermore, we verify the scalability of our approach by demonstrating successful building-scale mapping taking multiple loop closures into account during the optimization, and show that our method outperforms existing state-of-the-art approaches on large scenes in terms of quality and runtime. Our code is available open-source at https://github.com/KTH-RPL/neural_graph_mapping.

WACV ...

WACV 2025, Project page: https://kth-rpl.github.io/neural_graph_mapping/

Multimodal Fusion SLAM with Fourier Attention 2025-06-24
Show

Visual SLAM is particularly challenging in environments affected by noise, varying lighting conditions, and darkness. Learning-based optical flow algorithms can leverage multiple modalities to address these challenges, but traditional optical flow-based visual SLAM approaches often require significant computational resources.To overcome this limitation, we propose FMF-SLAM, an efficient multimodal fusion SLAM method that utilizes fast Fourier transform (FFT) to enhance the algorithm efficiency. Specifically, we introduce a novel Fourier-based self-attention and cross-attention mechanism to extract features from RGB and depth signals. We further enhance the interaction of multimodal features by incorporating multi-scale knowledge distillation across modalities. We also demonstrate the practical feasibility of FMF-SLAM in real-world scenarios with real time performance by integrating it with a security robot by fusing with a global positioning module GNSS-RTK and global Bundle Adjustment. Our approach is validated using video sequences from TUM, TartanAir, and our real-world datasets, showcasing state-of-the-art performance under noisy, varying lighting, and dark conditions.Our code and datasets are available at https://github.com/youjie-zhou/FMF-SLAM.git.

Accepted in IEEE RAL
GRAND-SLAM: Local Optimization for Globally Consistent Large-Scale Multi-Agent Gaussian SLAM 2025-06-23
Show

3D Gaussian splatting has emerged as an expressive scene representation for RGB-D visual SLAM, but its application to large-scale, multi-agent outdoor environments remains unexplored. Multi-agent Gaussian SLAM is a promising approach to rapid exploration and reconstruction of environments, offering scalable environment representations, but existing approaches are limited to small-scale, indoor environments. To that end, we propose Gaussian Reconstruction via Multi-Agent Dense SLAM, or GRAND-SLAM, a collaborative Gaussian splatting SLAM method that integrates i) an implicit tracking module based on local optimization over submaps and ii) an approach to inter- and intra-robot loop closure integrated into a pose-graph optimization framework. Experiments show that GRAND-SLAM provides state-of-the-art tracking performance and 28% higher PSNR than existing methods on the Replica indoor dataset, as well as 91% lower multi-agent tracking error and improved rendering over existing multi-agent methods on the large-scale, outdoor Kimera-Multi dataset.

4Seasons: Benchmarking Visual SLAM and Long-Term Localization for Autonomous Driving in Challenging Conditions 2025-06-19
Show

In this paper, we present a novel visual SLAM and long-term localization benchmark for autonomous driving in challenging conditions based on the large-scale 4Seasons dataset. The proposed benchmark provides drastic appearance variations caused by seasonal changes and diverse weather and illumination conditions. While significant progress has been made in advancing visual SLAM on small-scale datasets with similar conditions, there is still a lack of unified benchmarks representative of real-world scenarios for autonomous driving. We introduce a new unified benchmark for jointly evaluating visual odometry, global place recognition, and map-based visual localization performance which is crucial to successfully enable autonomous driving in any condition. The data has been collected for more than one year, resulting in more than 300 km of recordings in nine different environments ranging from a multi-level parking garage to urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up to centimeter-level accuracy obtained from the fusion of direct stereo-inertial odometry with RTK GNSS. We evaluate the performance of several state-of-the-art visual odometry and visual localization baseline approaches on the benchmark and analyze their properties. The experimental results provide new insights into current approaches and show promising potential for future research. Our benchmark and evaluation protocols will be available at https://go.vision.in.tum.de/4seasons.

Publi...

Published in International Journal of Computer Vision (IJCV). arXiv admin note: substantial text overlap with arXiv:2009.06364

NGD-SLAM: Towards Real-Time Dynamic SLAM without GPU 2025-06-16
Show

Many existing visual SLAM methods can achieve high localization accuracy in dynamic environments by leveraging deep learning to mask moving objects. However, these methods incur significant computational overhead as the camera tracking needs to wait for the deep neural network to generate mask at each frame, and they typically require GPUs for real-time operation, which restricts their practicality in real-world robotic applications. Therefore, this paper proposes a real-time dynamic SLAM system that runs exclusively on a CPU. Our approach incorporates a mask propagation mechanism that decouples camera tracking and deep learning-based masking for each frame. We also introduce a hybrid tracking strategy that integrates ORB features with optical flow methods, enhancing both robustness and efficiency by selectively allocating computational resources to input frames. Compared to previous methods, our system maintains high localization accuracy in dynamic environments while achieving a tracking frame rate of 60 FPS on a laptop CPU. These results demonstrate the feasibility of utilizing deep learning for dynamic SLAM without GPU support. Since most existing dynamic SLAM systems are not open-source, we make our code publicly available at: https://github.com/yuhaozhang7/NGD-SLAM

7 pages, 6 figures
LRSLAM: Low-rank Representation of Signed Distance Fields in Dense Visual SLAM System 2025-06-12
Show

Simultaneous Localization and Mapping (SLAM) has been crucial across various domains, including autonomous driving, mobile robotics, and mixed reality. Dense visual SLAM, leveraging RGB-D camera systems, offers advantages but faces challenges in achieving real-time performance, robustness, and scalability for large-scale scenes. Recent approaches utilizing neural implicit scene representations show promise but suffer from high computational costs and memory requirements. ESLAM introduced a plane-based tensor decomposition but still struggled with memory growth. Addressing these challenges, we propose a more efficient visual SLAM model, called LRSLAM, utilizing low-rank tensor decomposition methods. Our approach, leveraging the Six-axis and CP decompositions, achieves better convergence rates, memory efficiency, and reconstruction/localization quality than existing state-of-the-art approaches. Evaluation across diverse indoor RGB-D datasets demonstrates LRSLAM's superior performance in terms of parameter efficiency, processing time, and accuracy, retaining reconstruction and localization quality. Our code will be publicly available upon publication.

Accep...

Accepted at ECCV 2024

VAULT: A Mobile Mapping System for ROS 2-based Autonomous Robots 2025-06-11
Show

Localization plays a crucial role in the navigation capabilities of autonomous robots, and while indoor environments can rely on wheel odometry and 2D LiDAR-based mapping, outdoor settings such as agriculture and forestry, present unique challenges that necessitate real-time localization and consistent mapping. Addressing this need, this paper introduces the VAULT prototype, a ROS 2-based mobile mapping system (MMS) that combines various sensors to enable robust outdoor and indoor localization. The proposed solution harnesses the power of Global Navigation Satellite System (GNSS) data, visual-inertial odometry (VIO), inertial measurement unit (IMU) data, and the Extended Kalman Filter (EKF) to generate reliable 3D odometry. To further enhance the localization accuracy, Visual SLAM (VSLAM) is employed, resulting in the creation of a comprehensive 3D point cloud map. By leveraging these sensor technologies and advanced algorithms, the prototype offers a comprehensive solution for outdoor localization in autonomous mobile robots, enabling them to navigate and map their surroundings with confidence and precision.

15 pa...

15 pages, 5 figures, Submitted to WAF 2023: Workshop de Agentes Fisicos

AquaticVision: Benchmarking Visual SLAM in Underwater Environment with Events and Frames 2025-06-05
Show

Many underwater applications, such as offshore asset inspections, rely on visual inspection and detailed 3D reconstruction. Recent advancements in underwater visual SLAM systems for aquatic environments have garnered significant attention in marine robotics research. However, existing underwater visual SLAM datasets often lack groundtruth trajectory data, making it difficult to objectively compare the performance of different SLAM algorithms based solely on qualitative results or COLMAP reconstruction. In this paper, we present a novel underwater dataset that includes ground truth trajectory data obtained using a motion capture system. Additionally, for the first time, we release visual data that includes both events and frames for benchmarking underwater visual positioning. By providing event camera data, we aim to facilitate the development of more robust and advanced underwater visual SLAM algorithms. The use of event cameras can help mitigate challenges posed by extremely low light or hazy underwater conditions. The webpage of our dataset is https://sites.google.com/view/aquaticvision-lias.

PLGSLAM: Progressive Neural Scene Represenation with Local to Global Bundle Adjustment 2025-05-27
Show

Neural implicit scene representations have recently shown encouraging results in dense visual SLAM. However, existing methods produce low-quality scene reconstruction and low-accuracy localization performance when scaling up to large indoor scenes and long sequences. These limitations are mainly due to their single, global radiance field with finite capacity, which does not adapt to large scenarios. Their end-to-end pose networks are also not robust enough with the growth of cumulative errors in large scenes. To this end, we introduce PLGSLAM, a neural visual SLAM system capable of high-fidelity surface reconstruction and robust camera tracking in real-time. To handle large-scale indoor scenes, PLGSLAM proposes a progressive scene representation method which dynamically allocates new local scene representation trained with frames within a local sliding window. This allows us to scale up to larger indoor scenes and improves robustness (even under pose drifts). In local scene representation, PLGSLAM utilizes tri-planes for local high-frequency features with multi-layer perceptron (MLP) networks for the low-frequency feature, achieving smoothness and scene completion in unobserved areas. Moreover, we propose local-to-global bundle adjustment method with a global keyframe database to address the increased pose drifts on long sequences. Experimental results demonstrate that PLGSLAM achieves state-of-the-art scene reconstruction results and tracking performance across various datasets and scenarios (both in small and large-scale indoor environments). The code is open-sourced at https://github.com/dtc111111/plgslam.

Accep...

Accepted by CVPR 2024

TAT-VPR: Ternary Adaptive Transformer for Dynamic and Efficient Visual Place Recognition 2025-05-22
Show

TAT-VPR is a ternary-quantized transformer that brings dynamic accuracy-efficiency trade-offs to visual SLAM loop-closure. By fusing ternary weights with a learned activation-sparsity gate, the model can control computation by up to 40% at run-time without degrading performance (Recall@1). The proposed two-stage distillation pipeline preserves descriptor quality, letting it run on micro-UAV and embedded SLAM stacks while matching state-of-the-art localization accuracy.

Is Semantic SLAM Ready for Embedded Systems ? A Comparative Survey 2025-05-18
Show

In embedded systems, robots must perceive and interpret their environment efficiently to operate reliably in real-world conditions. Visual Semantic SLAM (Simultaneous Localization and Mapping) enhances standard SLAM by incorporating semantic information into the map, enabling more informed decision-making. However, implementing such systems on resource-limited hardware involves trade-offs between accuracy, computing efficiency, and power usage. This paper provides a comparative review of recent Semantic Visual SLAM methods with a focus on their applicability to embedded platforms. We analyze three main types of architectures - Geometric SLAM, Neural Radiance Fields (NeRF), and 3D Gaussian Splatting - and evaluate their performance on constrained hardware, specifically the NVIDIA Jetson AGX Orin. We compare their accuracy, segmentation quality, memory usage, and energy consumption. Our results show that methods based on NeRF and Gaussian Splatting achieve high semantic detail but demand substantial computing resources, limiting their use on embedded devices. In contrast, Semantic Geometric SLAM offers a more practical balance between computational cost and accuracy. The review highlights a need for SLAM algorithms that are better adapted to embedded environments, and it discusses key directions for improving their efficiency through algorithm-hardware co-design.

Large-Scale Gaussian Splatting SLAM 2025-05-15
Show

The recently developed Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have shown encouraging and impressive results for visual SLAM. However, most representative methods require RGBD sensors and are only available for indoor environments. The robustness of reconstruction in large-scale outdoor scenarios remains unexplored. This paper introduces a large-scale 3DGS-based visual SLAM with stereo cameras, termed LSG-SLAM. The proposed LSG-SLAM employs a multi-modality strategy to estimate prior poses under large view changes. In tracking, we introduce feature-alignment warping constraints to alleviate the adverse effects of appearance similarity in rendering losses. For the scalability of large-scale scenarios, we introduce continuous Gaussian Splatting submaps to tackle unbounded scenes with limited memory. Loops are detected between GS submaps by place recognition and the relative pose between looped keyframes is optimized utilizing rendering and feature warping losses. After the global optimization of camera poses and Gaussian points, a structure refinement module enhances the reconstruction quality. With extensive evaluations on the EuRoc and KITTI datasets, LSG-SLAM achieves superior performance over existing Neural, 3DGS-based, and even traditional approaches. Project page: https://lsg-slam.github.io.

Large-scale visual SLAM for in-the-wild videos 2025-04-29
Show

Accurate and robust 3D scene reconstruction from casual, in-the-wild videos can significantly simplify robot deployment to new environments. However, reliable camera pose estimation and scene reconstruction from such unconstrained videos remains an open challenge. Existing visual-only SLAM methods perform well on benchmark datasets but struggle with real-world footage which often exhibits uncontrolled motion including rapid rotations and pure forward movements, textureless regions, and dynamic objects. We analyze the limitations of current methods and introduce a robust pipeline designed to improve 3D reconstruction from casual videos. We build upon recent deep visual odometry methods but increase robustness in several ways. Camera intrinsics are automatically recovered from the first few frames using structure-from-motion. Dynamic objects and less-constrained areas are masked with a predictive model. Additionally, we leverage monocular depth estimates to regularize bundle adjustment, mitigating errors in low-parallax situations. Finally, we integrate place recognition and loop closure to reduce long-term drift and refine both intrinsics and pose estimates through global bundle adjustment. We demonstrate large-scale contiguous 3D models from several online videos in various environments. In contrast, baseline methods typically produce locally inconsistent results at several points, producing separate segments or distorted maps. In lieu of ground-truth pose data, we evaluate map consistency, execution time and visual accuracy of re-rendered NeRF models. Our proposed system establishes a new baseline for visual reconstruction from casual uncontrolled videos found online, demonstrating more consistent reconstructions over longer sequences of in-the-wild videos than previously achieved.

fix t...

fix the overview figure

SLAM-Based Navigation and Fault Resilience in a Surveillance Quadcopter with Embedded Vision Systems 2025-04-23
Show

We present an autonomous aerial surveillance platform, Veg, designed as a fault-tolerant quadcopter system that integrates visual SLAM for GPS-independent navigation, advanced control architecture for dynamic stability, and embedded vision modules for real-time object and face recognition. The platform features a cascaded control design with an LQR inner-loop and PD outer-loop trajectory control. It leverages ORB-SLAM3 for 6-DoF localization and loop closure, and supports waypoint-based navigation through Dijkstra path planning over SLAM-derived maps. A real-time Failure Detection and Identification (FDI) system detects rotor faults and executes emergency landing through re-routing. The embedded vision system, based on a lightweight CNN and PCA, enables onboard object detection and face recognition with high precision. The drone operates fully onboard using a Raspberry Pi 4 and Arduino Nano, validated through simulations and real-world testing. This work consolidates real-time localization, fault recovery, and embedded AI on a single platform suitable for constrained environments.

18 pa...

18 pages, 21 figures, 15 tables. Onboard processing using Raspberry Pi 4 and Arduino Nano. Includes ORB-SLAM3-based navigation, LQR control, rotor fault recovery, object detection, and PCA face recognition. Real-world and simulation tests included. Designed for GPS-denied autonomous UAV surveillance

GroundSLAM: A Robust Visual SLAM System for Warehouse Robots Using Ground Textures 2025-04-16
Show

A robust visual localization and mapping system is essential for warehouse robot navigation, as cameras offer a more cost-effective alternative to LiDAR sensors. However, existing forward-facing camera systems often encounter challenges in dynamic environments and open spaces, leading to significant performance degradation during deployment. To address these limitations, a localization system utilizing a single downward-facing camera to capture ground textures presents a promising solution. Nevertheless, existing feature-based ground-texture localization methods face difficulties when operating on surfaces with sparse features or repetitive patterns. To address this limitation, we propose GroundSLAM, a novel feature-free and ground-texture-based simultaneous localization and mapping (SLAM) system. GroundSLAM consists of three components: feature-free visual odometry, ground-texture-based loop detection and map optimization, and map reuse. Specifically, we introduce a kernel cross-correlator (KCC) for image-level pose tracking, loop detection, and map reuse to improve localization accuracy and robustness, and incorporate adaptive pruning strategies to enhance efficiency. Due to these specific designs, GroundSLAM is able to deliver efficient and stable localization across various ground surfaces such as those with sparse features and repetitive patterns. To advance research in this area, we introduce the first ground-texture dataset with precise ground-truth poses, consisting of 131k images collected from 10 kinds of indoor and outdoor ground surfaces. Extensive experimental results show that GroundSLAM outperforms state-of-the-art methods for both indoor and outdoor localization. We release our code and dataset at https://github.com/sair-lab/GroundSLAM.

VSLAM-LAB: A Comprehensive Framework for Visual SLAM Methods and Datasets 2025-04-06
Show

Visual Simultaneous Localization and Mapping (VSLAM) research faces significant challenges due to fragmented toolchains, complex system configurations, and inconsistent evaluation methodologies. To address these issues, we present VSLAM-LAB, a unified framework designed to streamline the development, evaluation, and deployment of VSLAM systems. VSLAM-LAB simplifies the entire workflow by enabling seamless compilation and configuration of VSLAM algorithms, automated dataset downloading and preprocessing, and standardized experiment design, execution, and evaluation--all accessible through a single command-line interface. The framework supports a wide range of VSLAM systems and datasets, offering broad compatibility and extendability while promoting reproducibility through consistent evaluation metrics and analysis tools. By reducing implementation complexity and minimizing configuration overhead, VSLAM-LAB empowers researchers to focus on advancing VSLAM methodologies and accelerates progress toward scalable, real-world solutions. We demonstrate the ease with which user-relevant benchmarks can be created: here, we introduce difficulty-level-based categories, but one could envision environment-specific or condition-specific categories.

MCVO: A Generic Visual Odometry for Arbitrarily Arranged Multi-Cameras 2025-03-25
Show

Making multi-camera visual SLAM systems easier to set up and more robust to the environment is attractive for vision robots. Existing monocular and binocular vision SLAM systems have narrow sensing Field-of-View (FoV), resulting in degenerated accuracy and limited robustness in textureless environments. Thus multi-camera SLAM systems are gaining attention because they can provide redundancy with much wider FoV. However, the usual arbitrary placement and orientation of multiple cameras make the pose scale estimation and system updating challenging. To address these problems, we propose a robust visual odometry system for rigidly-bundled arbitrarily-arranged multi-cameras, namely MCVO, which can achieve metric-scale state estimation with high flexibility in the cameras' arrangement. Specifically, we first design a learning-based feature tracking framework to shift the pressure of CPU processing of multiple video streams to GPU. Then we initialize the odometry system with the metric-scale poses under the rigid constraints between moving cameras. Finally, we fuse the features of the multi-cameras in the back-end to achieve robust pose estimation and online scale optimization. Additionally, multi-camera features help improve the loop detection for pose graph optimization. Experiments on KITTI-360 and MultiCamData datasets validate its robustness over arbitrarily arranged cameras. Compared with other stereo and multi-camera visual SLAM systems, our method obtains higher pose accuracy with better generalization ability. Our codes and online demos are available at https://github.com/JunhaoWang615/MCVO

8 pages, 8 figures
NF-SLAM: Effective, Normalizing Flow-supported Neural Field representations for object-level visual SLAM in automotive applications 2025-03-14
Show

We propose a novel, vision-only object-level SLAM framework for automotive applications representing 3D shapes by implicit signed distance functions. Our key innovation consists of augmenting the standard neural representation by a normalizing flow network. As a result, achieving strong representation power on the specific class of road vehicles is made possible by compact networks with only 16-dimensional latent codes. Furthermore, the newly proposed architecture exhibits a significant performance improvement in the presence of only sparse and noisy data, which is demonstrated through comparative experiments on synthetic data. The module is embedded into the back-end of a stereo-vision based framework for joint, incremental shape optimization. The loss function is given by a combination of a sparse 3D point-based SDF loss, a sparse rendering loss, and a semantic mask-based silhouette-consistency term. We furthermore leverage semantic information to determine keypoint extraction density in the front-end. Finally, experimental results on real-world data reveal accurate and reliable performance comparable to alternative frameworks that make use of direct depth readings. The proposed method performs well with only sparse 3D points obtained from bundle adjustment, and eventually continues to deliver stable results even under exclusive use of the mask-consistency term.

9 pag...

9 pages, 5 figures, IROS 2024

MonoSLAM: Robust Monocular SLAM with Global Structure Optimization 2025-03-12
Show

This paper presents a robust monocular visual SLAM system that simultaneously utilizes point, line, and vanishing point features for accurate camera pose estimation and mapping. To address the critical challenge of achieving reliable localization in low-texture environments, where traditional point-based systems often fail due to insufficient visual features, we introduce a novel approach leveraging Global Primitives structural information to improve the system's robustness and accuracy performance. Our key innovation lies in constructing vanishing points from line features and proposing a weighted fusion strategy to build Global Primitives in the world coordinate system. This strategy associates multiple frames with non-overlapping regions and formulates a multi-frame reprojection error optimization, significantly improving tracking accuracy in texture-scarce scenarios. Evaluations on various datasets show that our system outperforms state-of-the-art methods in trajectory precision, particularly in challenging environments.

AirSwarm: Enabling Cost-Effective Multi-UAV Research with COTS drones 2025-03-10
Show

Traditional unmanned aerial vehicle (UAV) swarm missions rely heavily on expensive custom-made drones with onboard perception or external positioning systems, limiting their widespread adoption in research and education. To address this issue, we propose AirSwarm. AirSwarm democratizes multi-drone coordination using low-cost commercially available drones such as Tello or Anafi, enabling affordable swarm aerial robotics research and education. Key innovations include a hierarchical control architecture for reliable multi-UAV coordination, an infrastructure-free visual SLAM system for precise localization without external motion capture, and a ROS-based software framework for simplified swarm development. Experiments demonstrate cm-level tracking accuracy, low-latency control, communication failure resistance, formation flight, and trajectory tracking. By reducing financial and technical barriers, AirSwarm makes multi-robot education and research more accessible. The complete instructions and open source code will be available at

OpenGV 2.0: Motion prior-assisted calibration and SLAM with vehicle-mounted surround-view systems 2025-03-05
Show

The present paper proposes optimization-based solutions to visual SLAM with a vehicle-mounted surround-view camera system. Owing to their original use-case, such systems often only contain a single camera facing into either direction and very limited overlap between fields of view. Our novelty consist of three optimization modules targeting at practical online calibration of exterior orientations from simple two-view geometry, reliable front-end initialization of relative displacements, and accurate back-end optimization using a continuous-time trajectory model. The commonality between the proposed modules is given by the fact that all three of them exploit motion priors that are related to the inherent non-holonomic characteristics of passenger vehicle motion. In contrast to prior related art, the proposed modules furthermore excel in terms of bypassing partial unobservabilities in the transformation variables that commonly occur for Ackermann-motion. As a further contribution, the modules are built into a novel surround-view camera SLAM system that specifically targets deployment on Ackermann vehicles operating in urban environments. All modules are studied in the context of in-depth ablation studies, and the practical validity of the entire framework is supported by a successful application to challenging, large-scale publicly available online datasets. Note that upon acceptance, the entire framework is scheduled for open-source release as part of an extension of the OpenGV library.

Monocular visual simultaneous localization and mapping: (r)evolution from geometry to deep learning-based pipelines 2025-03-04
Show

With the rise of deep learning, there is a fundamental change in visual SLAM algorithms toward developing different modules trained as end-to-end pipelines. However, regardless of the implementation domain, visual SLAM's performance is subject to diverse environmental challenges, such as dynamic elements in outdoor environments, harsh imaging conditions in underwater environments, or blurriness in high-speed setups. These environmental challenges need to be identified to study the real-world viability of SLAM implementations. Motivated by the aforementioned challenges, this paper surveys the current state of visual SLAM algorithms according to the two main frameworks: geometry-based and learning-based SLAM. First, we introduce a general formulation of the SLAM pipeline that includes most of the implementations in the literature. Second, those implementations are classified and surveyed for geometry and learning-based SLAM. After that, environment-specific challenges are formulated to enable experimental evaluation of the resilience of different visual SLAM classes to varying imaging conditions. We address two significant issues in surveying visual SLAM, providing (1) a consistent classification of visual SLAM pipelines and (2) a robust evaluation of their performance under different deployment conditions. Finally, we give our take on future opportunities for visual SLAM implementations.

MUSt3R: Multi-view Network for Stereo 3D Reconstruction 2025-03-03
Show

DUSt3R introduced a novel paradigm in geometric computer vision by proposing a model that can provide dense and unconstrained Stereo 3D Reconstruction of arbitrary image collections with no prior information about camera calibration nor viewpoint poses. Under the hood, however, DUSt3R processes image pairs, regressing local 3D reconstructions that need to be aligned in a global coordinate system. The number of pairs, growing quadratically, is an inherent limitation that becomes especially concerning for robust and fast optimization in the case of large image collections. In this paper, we propose an extension of DUSt3R from pairs to multiple views, that addresses all aforementioned concerns. Indeed, we propose a Multi-view Network for Stereo 3D Reconstruction, or MUSt3R, that modifies the DUSt3R architecture by making it symmetric and extending it to directly predict 3D structure for all views in a common coordinate frame. Second, we entail the model with a multi-layer memory mechanism which allows to reduce the computational complexity and to scale the reconstruction to large collections, inferring thousands of 3D pointmaps at high frame-rates with limited added complexity. The framework is designed to perform 3D reconstruction both offline and online, and hence can be seamlessly applied to SfM and visual SLAM scenarios showing state-of-the-art performance on various 3D downstream tasks, including uncalibrated Visual Odometry, relative camera pose, scale and focal estimation, 3D reconstruction and multi-view depth estimation.

Accep...

Accepted at CVPR 2025

HMD^2: Environment-aware Motion Generation from Single Egocentric Head-Mounted Device 2025-03-02
Show

This paper investigates the generation of realistic full-body human motion using a single head-mounted device with an outward-facing color camera and the ability to perform visual SLAM. To address the ambiguity of this setup, we present HMD^2, a novel system that balances motion reconstruction and generation. From a reconstruction standpoint, it aims to maximally utilize the camera streams to produce both analytical and learned features, including head motion, SLAM point cloud, and image embeddings. On the generative front, HMD^2 employs a multi-modal conditional motion diffusion model with a Transformer backbone to maintain temporal coherence of generated motions, and utilizes autoregressive inpainting to facilitate online motion inference with minimal latency (0.17 seconds). We show that our system provides an effective and robust solution that scales to a diverse dataset of over 200 hours of motion in complex indoor and outdoor environments.

Inter...

International Conference on 3D Vision 2025 (3DV 2025)

Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification Algorithms with Formal Guarantees 2025-03-02
Show

In multi-robot systems, ensuring safe and reliable decision making under uncertain conditions demands robust multi-robot belief space planning (MR-BSP) algorithms. While planning with multiple robots, each robot maintains a belief over the state of the environment and reasons how the belief would evolve in the future for different possible actions. However, existing MR-BSP works have a common assumption that the beliefs of different robots are same at planning time. Such an assumption is often unrealistic as it requires prohibitively extensive and frequent data sharing capabilities. In practice, robots may have limited communication capabilities, and consequently beliefs of the robots can be different. Crucially, when the robots have inconsistent beliefs, the existing approaches could result in lack of coordination between the robots and may lead to unsafe decisions. In this paper, we present decentralized MR-BSP algorithms, with performance guarantees, for tackling this crucial gap. Our algorithms leverage the notion of action preferences. The base algorithm VerifyAC guarantees a consistent joint action selection by the cooperative robots via a three-step verification. When the verification succeeds, VerifyAC finds a consistent joint action without triggering a communication; otherwise it triggers a communication. We design an extended algorithm R-VerifyAC for further reducing the number of communications, by relaxing the criteria of action consistency. Another extension R-VerifyAC-simp builds on verifying a partial set of observations and improves the computation time significantly. The theoretical performance guarantees are corroborated with simulation results in discrete setting. Furthermore, we formulate our approaches for continuous and high-dimensional state and observation spaces, and provide experimental results for active multi-robot visual SLAM with real robots.

The n...

The new version has been extended from the existing arxiv version of the paper in the following way: - The old (base) algorithm VerifyAC has been retained in the new version. - Added two new algorithms R-VerifyAC and R-VerifyAC-simp along with their performance guarantees. - A new formulation in continuous spaces have been added. - Experimental results for the new approaches have been added

AirSLAM: An Efficient and Illumination-Robust Point-Line Visual SLAM System 2025-02-27
Show

In this paper, we present an efficient visual SLAM system designed to tackle both short-term and long-term illumination challenges. Our system adopts a hybrid approach that combines deep learning techniques for feature detection and matching with traditional backend optimization methods. Specifically, we propose a unified convolutional neural network (CNN) that simultaneously extracts keypoints and structural lines. These features are then associated, matched, triangulated, and optimized in a coupled manner. Additionally, we introduce a lightweight relocalization pipeline that reuses the built map, where keypoints, lines, and a structure graph are used to match the query frame with the map. To enhance the applicability of the proposed system to real-world robots, we deploy and accelerate the feature detection and matching networks using C++ and NVIDIA TensorRT. Extensive experiments conducted on various datasets demonstrate that our system outperforms other state-of-the-art visual SLAM systems in illumination-challenging environments. Efficiency evaluations show that our system can run at a rate of 73Hz on a PC and 40Hz on an embedded platform. Our implementation is open-sourced: https://github.com/sair-lab/AirSLAM.

20 pa...

20 pages, 15 figures, 9 tables

Increasing the Task Flexibility of Heavy-Duty Manipulators Using Visual 6D Pose Estimation of Objects 2025-02-26
Show

Recent advances in visual 6D pose estimation of objects using deep neural networks have enabled novel ways of vision-based control for heavy-duty robotic applications. In this study, we present a pipeline for the precise tool positioning of heavy-duty, long-reach (HDLR) manipulators using advanced machine vision. A camera is utilized in the so-called eye-in-hand configuration to estimate directly the poses of a tool and a target object of interest (OOI). Based on the pose error between the tool and the target, along with motion-based calibration between the camera and the robot, precise tool positioning can be reliably achieved using conventional robotic modeling and control methods prevalent in the industry. The proposed methodology comprises orientation and position alignment based on the visually estimated OOI poses, whereas camera-to-robot calibration is conducted based on motion utilizing visual SLAM. The methods seek to avert the inaccuracies resulting from rigid-body--based kinematics of structurally flexible HDLR manipulators via image-based algorithms. To train deep neural networks for OOI pose estimation, only synthetic data are utilized. The methods are validated in a real-world setting using an HDLR manipulator with a 5 m reach. The experimental results demonstrate that an image-based average tool positioning error of less than 2 mm along the non-depth axes is achieved, which facilitates a new way to increase the task flexibility and automation level of non-rigid HDLR manipulators.

SLAM in the Dark: Self-Supervised Learning of Pose, Depth and Loop-Closure from Thermal Images 2025-02-26
Show

Visual SLAM is essential for mobile robots, drone navigation, and VR/AR, but traditional RGB camera systems struggle in low-light conditions, driving interest in thermal SLAM, which excels in such environments. However, thermal imaging faces challenges like low contrast, high noise, and limited large-scale annotated datasets, restricting the use of deep learning in outdoor scenarios. We present DarkSLAM, a noval deep learning-based monocular thermal SLAM system designed for large-scale localization and reconstruction in complex lighting conditions.Our approach incorporates the Efficient Channel Attention (ECA) mechanism in visual odometry and the Selective Kernel Attention (SKA) mechanism in depth estimation to enhance pose accuracy and mitigate thermal depth degradation. Additionally, the system includes thermal depth-based loop closure detection and pose optimization, ensuring robust performance in low-texture thermal scenes. Extensive outdoor experiments demonstrate that DarkSLAM significantly outperforms existing methods like SC-Sfm-Learner and Shin et al., delivering precise localization and 3D dense mapping even in challenging nighttime environments.

GSORB-SLAM: Gaussian Splatting SLAM benefits from ORB features and Transmittance information 2025-02-22
Show

The emergence of 3D Gaussian Splatting (3DGS) has recently ignited a renewed wave of research in dense visual SLAM. However, existing approaches encounter challenges, including sensitivity to artifacts and noise, suboptimal selection of training viewpoints, and the absence of global optimization. In this paper, we propose GSORB-SLAM, a dense SLAM framework that integrates 3DGS with ORB features through a tightly coupled optimization pipeline. To mitigate the effects of noise and artifacts, we propose a novel geometric representation and optimization method for tracking, which significantly enhances localization accuracy and robustness. For high-fidelity mapping, we develop an adaptive Gaussian expansion and regularization method that facilitates compact yet expressive scene modeling while suppressing redundant primitives. Furthermore, we design a hybrid graph-based viewpoint selection mechanism that effectively reduces overfitting and accelerates convergence. Extensive evaluations across various datasets demonstrate that our system achieves state-of-the-art performance in both tracking precision-improving RMSE by 16.2% compared to ORB-SLAM2 baselines-and reconstruction quality-improving PSNR by

About

📚这个仓库是在arxiv上收集的有关VLN,VLA,World Model,SLAM,Gaussian Splatting,非线性优化等相关论文。每天都会自动更新!issue区域是最新10篇论文

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages