RMSearch is a high intellectual search tool using reward model instead of semantic embedding model. Agentic search is a good application and RMSearch enables step by step CoT reasoning and optimize the reasoning path!
Explore the docs »
View Demo
·
Report Bug
·
Request Feature
Table of Contents
Here's the example of how SEIMEI works. Each agent interacts with LLM and document and makes inference. These inferences are automatically integrated by search engine and gives an answer of question.
By training search engine, we can optimize the thinking steps like o1 or deepseek-r1!!
Our proprietary search model performs better than semantic embedding model(so called vector search). The graph above shows the result of training our model (3b) and e5-mistral-7b model to search best agents. While the vector search model cannot really retrieve best agents(because problems and agents do not have similar sentences), our proprietary search model can learn what agents are needed to solve a question and retrive the best ones!!
We acheved an improvement of bigcodebench/deepseek-r1 by our search engine!!
SEIMEI can be applied to make these useful functions!!
This is an example of how you build RMSearch on local gpu or cloud server gpu. You can use it by downloading this directory into your local folder.
This library requires cuda+torch environment with GPU. The memory of GPU should be higher than 12GB to run the sample.
- by
pip install
- Install seimei (not prepared yet)
pip install rmsearch
- by downloading SEIMEI repository
- Download the repo
git clone https://github.com/kyotoai/RMSearch.git cd RMSearch pip install .
We are still developing this library. Please wait for it completing soon!
-
Define search instance
from rmsearch import Search search = Search(model_name = "/workspace/llama3b-rm", tensor_parallel_size = 1, pipeline_parallel_size = 1,)
-
Search the most relevant keys
queries = ["How to make LLM?", "What's the capital of Japan?"] * 5 keys = ["LLM is Large Language Model which can be made ..."*7, "Japanese capital is ..."*7] * 5 output = await search(queries, keys) print(output)
See the full code in /examples/example_train2.ipynb
-
Generate Tree Structural LLM Output
# This is an example of making agentic tree to optimize brainstorming num_depth = 2 num_branch = 2 total_num_node = num_branch**(num_depth+1) - 2 bs_agent_tree = {} # Recursive function to make agentic tree def build_bs_agent_tree(**kwargs): # make kwargs_ from kwargs def _grow(node, depth, **kwargs_): if depth == num_depth: return for b in range(num_branch): child = { "agent" : "something", "node_ids" : node["node_ids"] + [b], } node["children"].append(child) _grow(child, depth + 1, **kwargs_) root = {"agent": "root", "node_ids": [], "children": []} _grow(root, 0, **kwargs_) return root # Get output from LLM def get_assistant_msg(node, **llm_kwargs): output = get_output(node["agent"], **llm_kwargs) # LLM function return output # Walk tree to add output def populate_tree(node, **llm_kwargs): if node["agent"] is not "root": # skip dummy root node["output"] = get_assistant_msg( node, **llm_kwargs, ) for child in node["children"]: populate_tree(child, **llm_kwargs) def check(output): # some function to check its novelty return evaluation # Walk tree to add evaluation towards each node's output def add_eval_to_tree(node, depth): if not node["output"] != None: if node["eval"] == []: node["eval"] = check(node["output"]) for child in node["children"]: add_eval_to_tree(child, depth + 1) # Asign agents to each node in bs_agent_tree bs_agent_tree = build_bs_agent_tree(agents, num_depth=num_depth, num_branch=num_branch) # bs_agent_tree : [{"agent":"root", "node_id":[0], "children":[{"agent":"agent1", "node_id":[0, 0], "children":[...]}, ...] # Get llm output in each node populate_tree(bs_agent_tree, **kwargs) # bs_agent_tree = [{"agent":"root", "node_id":[0], "children":[{"agent":"agent1", "output":"...", "node_id":[0, 0], "children":[...]}, ...] # Get evaluation of output in each node add_eval_to_tree(bs_agent_tree, 0) # bs_agent_tree = [{"agent":"root", "node_id":[0], "children":[{"agent":"agent1", "output":"...", "eval":"...", "node_id":[0, 0], "children":[...]}, ...]
-
Make dataset_list
# dataset_list should be # [{"query":str, "chosen_key":str, "rejected_key":str, **kwargs}, ...] # or # [{"query":[{"role":"user", "content":"context-and-query-to-get-key"}, ...], "chosen_key":[{"role":"assistant", "content":"chosen-LLM-agent"}, ...], "rejected_key":"chosen_key":[{"role":"assistant", "content":"rejected-LLM-agent"}, **kwargs}, ...] def get_dataset_dict(task, chosen_msg, rejected_msg): if len(chosen_msg) != len(chosen_msg): raise Exception("chosen_msg and rejected_msg must be same size") if len(chosen_msg) == 2: return { "query":[{'role': 'user', 'content':f"Give me a brainstorming sentence to solve the task below;\n\nTask:{task}"}], "chosen_key":[{'role': 'assistant', 'content': chosen_msg[0]["content"]}], "rejected_key":[{'role': 'assistant', 'content': rejected_msg[0]["content"]}], } elif len(chosen_msg) < 2: return None else: return { "query": chosen_msg[:-2] + [{'role': 'user', 'content':f"Give me a brainstorming sentence to solve the task below;\n\nTask:{task}"}], "chosen_key": [{'role': 'assistant', 'content': chosen_msg[-2]["content"]}], "rejected_key": [{'role': 'assistant', 'content': rejected_msg[-2]["content"]}], } dataset_list = [] def walk(node, depth): global dataset_list if node["children"] == []: return 0 else: num_novel = 0 updated_score = 0 scores = [] bs_msgs = [] for i, node_dict in enumerate(node["children"]): task = node_dict["task"] evaluation = node_dict["eval"] try: novelty = novelties[0] score = walk(node_dict, depth + 1) if novelty: score += 1 updated_score += score for j, other_score in enumerate(scores): #print(node_ids, score, other_score) if score < other_score: dataset_dict = get_dataset_dict(task, chosen_msg=bs_msgs[j], rejected_msg=bs_msg) elif score > other_score: dataset_dict = get_dataset_dict(task, chosen_msg=bs_msg, rejected_msg=bs_msgs[j]) else: continue dataset_list.append(dataset_dict) bs_msgs.append(bs_msg) scores.append(score) except: continue updated_score = updated_score / len(node["children"]) return updated_score for bs_agent_tree in bs_agent_trees: walk(bs_agent_tree, 0) # dataset_list = [{"query":[{"role":"user", "content":"context-and-query-to-get-key"}, ...], "chosen_key":[{"role":"assistant", "content":"chosen-LLM-agent"}, ...], "rejected_key":"chosen_key":[{"role":"assistant", "content":"rejected-LLM-agent"}, **kwargs}, ...]
-
Train Reward Model
from rmsearch import RMTrainer from trl import RewardConfig from peft import LoraConfig, TaskType model_name = "/workspace/llama3b-rm" exp_dir = "/workspace/exp1" model_save_dir = f"{exp_dir}/model1" test_size = 6 num_gpus = 1 batch_size_per_device = 3 eval_batch_size_per_device = 1 rmtrainer = RMTrainer(model_name = model_name, num_gpus = num_gpus) formatted_dataset = rmtrainer.prepare_dataset(dataset_list, base_dir = exp_dir, test_size = test_size) training_args = RewardConfig( output_dir=model_save_dir, per_device_train_batch_size=batch_size_per_device, per_device_eval_batch_size=eval_batch_size_per_device, eval_strategy="steps", eval_steps=1, eval_on_start=True, save_steps=10, logging_steps=1, num_train_epochs = 50, report_to=None, remove_unused_columns=False, ) peft_config = LoraConfig( task_type=TaskType.SEQ_CLS, inference_mode=False, target_modules=["k_proj","q_proj","o_proj", "v_proj","down_proj","gate_proj","up_proj",], layers_to_transform=[25,26,27], r=16, lora_alpha=16, lora_dropout=0.1, ) rmtrainer.train(formatted_dataset, training_args = training_args, peft_config = peft_config)
- Async vLLM
- Automatic Compatibility Solver
- Reward Trainer
- Examples of Making MCTS
See the open issues for a full list of proposed features (and known issues).
Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.
If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!
- Fork the Project
- Create your Feature Branch (
git checkout -b feature/AmazingFeature) - Commit your Changes (
git commit -m 'Add some AmazingFeature') - Push to the Branch (
git push origin feature/AmazingFeature) - Open a Pull Request
Distributed under the Apache-2.0 License. See LICENSE.txt for more information.
- KyotoAI Inc. - office@kyotoai.org
KyotoAI homepage: https://kyotoai.org
Project Link: https://github.com/kyotoai/RMSearch






