Skip to content

artificizen-dev/Assessment

Repository files navigation

RAG-Based AI Agent Assessment Task

Overview

Build a knowledge-based AI support agent that uses RAG (Retrieval Augmented Generation) to answer customer queries. The system should demonstrate your ability to implement efficient document retrieval.

Requirements

Core RAG Components

  1. Document Processing Pipeline

    • Implement document ingestion for PDF and markdown files
    • Create efficient text chunking strategies
    • Generate and store embeddings using a vector store
    • Track document sources and maintain metadata
  2. Retrieval System

    • Implement semantic search using embeddings
    • Create relevance scoring for retrieved chunks
    • Manage context window size effectively
    • Handle cases with multiple relevant documents
  3. Response Generation

    • Generate coherent responses using retrieved context
    • Include source citations in responses
    • Handle cases where no relevant information is found
    • Ensure response accuracy against source material

Technical Requirements

Vector Store Implementation

  • Use a vector database (ChromaDB, Pinecone, Qdrant, or Weaviate)
  • Implement efficient embedding generation
  • Create proper indexing structure
  • Handle document updates

Backend Development

  • Use FastAPI or Django REST Framework
  • Create endpoints for:
    • Document ingestion
    • Query processing
    • Knowledge base management

Knowledge Base

The system should handle:

  • PDF documents
  • Word Documents

Deliverables

  1. Source Code

    • Documented code with clear README
    • Setup instructions
    • Configuration examples
    • Data preprocessing scripts
  2. Technical Documentation

    • RAG implementation details
    • Email integration approach
    • System architecture diagram
    • API documentation

Time Allocation

  • 1 Week for completion
  • Submit on the provided GitHub repository

Sample Test Cases

  1. Process and query documents
  2. Handle edge cases (no irrelevant info, multiple sources handling)
  3. Show error handling

Submission Requirements

  1. GitHub repository with:

    • Complete source code on github
    • Maintain the version history
    • Instruction to run the code in the submission section
    • Loom video link in the submission section
  2. Demo showing:

    • Document ingestion process
    • Query-response examples
    • Error handling scenarios

Notes for Candidates

  • Take any test dataset from the internet
  • Focus on RAG quality
  • Document your chunking strategy
  • Explain context management approach
  • Include ideas for future improvements
  • Provide example queries and responses

Submission

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •