Skip to content

UnicoLab/FlowyML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

147 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🌊 flowyml

flowyml Logo
The Enterprise-Grade ML Pipeline Framework for Humans

CI Status PyPI Version Python 3.10+ License UnicoLab


FlowyML is a lightweight yet powerful ML pipeline orchestration framework. It bridges the gap between rapid experimentation and enterprise production by making assets first-class citizens. Write pipelines in pure Python, and scale them to production without changing a single line of code.

🚀 Why FlowyML?

Feature FlowyML Traditional Orchestrators
Developer Experience 🐍 Native Python - No DSLs, no YAML hell. 📜 Complex YAML or rigid DSLs.
Type-Based Routing 🧠 Auto-Routing - Define WHAT, we handle WHERE. 🔌 Manual wiring to cloud buckets.
Smart Caching Multi-Level - Smart content-hashing skips re-runs. 🐢 Basic file-timestamp checking.
Asset Management 📦 First-Class Assets - Models & Datasets with lineage. 📁 Generic file paths only.
Multi-Stack 🌍 Abstract Infra - Switch local/prod with one env var. 🔒 Vendor lock-in or complex setup.
GenAI Ready 🤖 LLM Tracing - Built-in token & cost tracking. 🧩 Requires external tools.

⚡️ Quick Start

This is a complete, multi-step ML pipeline with auto-injected context:

from flowyml import Pipeline, step, context

@step(outputs=["dataset"])
def load_data(batch_size: int = 32):
    return [i for i in range(batch_size)]

@step(inputs=["dataset"], outputs=["model"])
def train_model(dataset, learning_rate: float = 0.01):
    print(f"Training on {len(dataset)} items with lr={learning_rate}")
    return "model_v1"

# Configure and Run
ctx = context(learning_rate=0.05, batch_size=64)
pipeline = Pipeline("quickstart", context=ctx)
pipeline.add_step(load_data).add_step(train_model)

pipeline.run()

🌟 Key Features

1. 🧠 Type-Based Artifact Routing (New in 1.8.0)

Define artifact types in code, and FlowyML automatically routes them to your cloud infrastructure.

@step
def train(...) -> Model:
    # Auto-saved to GCS/S3 and registered to Vertex AI / SageMaker
    return Model(obj, name="classifier")

2. 🌍 Multi-Stack Configuration

Manage local, staging, and production environments in a single flowyml.yaml.

export FLOWYML_STACK=production
python pipeline.py  # Now runs on Vertex AI with GCS storage

3. 🛡️ Intelligent Step Grouping

Group consecutive steps to run in the same container. Perfect for reducing overhead while maintaining clear step boundaries.

4. 📊 Built-in Observability

Beautiful dark-mode dashboard to monitor pipelines, visualize DAGs, and inspect artifacts in real-time.


📦 Installation

# Install core
pip install flowyml

# Install with everything (recommended)
pip install "flowyml[all]"

📚 Documentation

Visit docs.flowyml.ai for:


Built with ❤️ by UnicoLab