An autonomous Agentic AI system that monitors internal documentation, evaluates its relevance using LLMs, and flags "stale" or outdated knowledge.
Engineering teams often suffer from "Knowledge Decay"βdocumentation that becomes misleading over time. This tool automates the maintenance process by:
- Scanning repositories (Local or GitHub) for Markdown files.
- Evaluating content using OpenAI (GPT-4) to detect signs of staleness.
- Notifying the team via console alerts (extensible to Slack/Email).
The system follows a modular Agentic workflow:
- Scanner Agent (
src/scanner.py): Handles file I/O and GitHub API traversal. - Evaluator Agent (
src/evaluator.py): Uses Prompt Engineering to judge document freshness. - Notifier Agent (
src/notifier.py): Aggregates results and generates alerts. - Orchestrator (
main.py): Manages the data flow between agents.
- Language: Python 3.10+
- AI: OpenAI API (GPT-4o / GPT-3.5)
- Integration: PyGithub (GitHub API)
- Environment:
python-dotenvfor security
-
Clone the repository
git clone [https://github.com/YOUR_USERNAME/knowledge-decay-agent.git](https://github.com/YOUR_USERNAME/knowledge-decay-agent.git) cd knowledge-decay-agent -
Create Virtual Environment
python -m venv venv source venv/bin/activate # Windows: venv\Scripts\activate
-
Install Dependencies
pip install -r requirements.txt
-
Configure Credentials Create a
.envfile in the root directory:OPENAI_API_KEY=sk-... GITHUB_TOKEN=ghp-...
Scan a Local Directory:
python main.py --target "docs/"