Multi-Asset LLM-Assisted Trading System
An autonomous cryptocurrency trading system using a multi-agent architecture with 6 LLMs for decision comparison and consensus-based trading.
| Aspect | Details |
|---|---|
| Objective | Grow BTC, USDT, XRP holdings autonomously |
| Target Allocation | 33% BTC / 33% XRP / 33% USDT |
| Trading Pairs | BTC/USDT, XRP/USDT, XRP/BTC |
| Starting Capital | ~$2,100 |
| Exchange | Kraken (spot + margin) |
| LLMs | Qwen(local), GPT, Grok, Claude, DeepSeek |
| Deployment | Paper trading → Micro-live → Scale |
┌──────────────────────────────────────────────────────────────────┐
│ ANALYSIS LAYER │
│ Technical Analysis │ Regime Detection │ Sentiment Analysis │
│ (Qwen Local) │ (Qwen Local) │ (Grok + GPT) │
└──────────────────────────────┬───────────────────────────────────┘
▼
┌──────────────────────────────────────────────────────────────────┐
│ DECISION LAYER (6-Model A/B) │
│ GPT │ Grok │ DeepSeek V3 │ Claude Sonnet │ Claude Opus │ Qwen │
└──────────────────────────────┬───────────────────────────────────┘
▼
┌──────────────────────────────────────────────────────────────────┐
│ Risk Management (Rules) ──► Coordinator ──► Order Execution │
│ VETO AUTHORITY │ │
└──────────────────────────────────────────────────────────────────┘
Key Design Decisions:
- 6-Model A/B Testing: All LLMs run in parallel for comparison and consensus
- Rules-Based Risk: Deterministic risk management, no LLM override possible
- Trend-Following: Research shows mean reversion fails on crypto
- Conservative Execution: Quality over quantity
# Start database
docker-compose up -d timescaledb
# Fill any data gaps
python -m data.kraken_db.gap_filler --db-url "$DATABASE_URL"
# Run tests
pytestCurrent Phase: Pre-Phase 1 (Infrastructure Ready)
| Phase | Status | Description |
|---|---|---|
| Infrastructure | Complete | TimescaleDB, data collectors, Ollama |
| 1. Foundation | Not Started | Indicators, snapshots, prompts |
| 2. Core Agents | Not Started | TA, Regime, Risk, Trading Decision |
| 3. Orchestration | Not Started | Communication, Coordinator, Execution |
| 4. Extended | Not Started | Sentiment, Hodl Bag, Dashboard |
| 5. Production | Not Started | Testing, Paper/Live Trading |
- Historical Data: 5-9 years via TimescaleDB continuous aggregates
- Symbols: XRP/BTC (2016), BTC/USDT (2019), XRP/USDT (2020)
- Timeframes: 1m, 5m, 15m, 30m, 1h, 4h, 12h, 1d, 1w
- Collectors: WebSocket writer, gap filler, order book, private trades
| Metric | Target |
|---|---|
| Annual Return | > 50% |
| Maximum Drawdown | < 20% |
| Sharpe Ratio | > 1.5 |
| Win Rate | > 50% |
| System Uptime | > 99% |
- Max Leverage: 5x
- Daily Loss Limit: 5%
- Weekly Loss Limit: 10%
- Max Drawdown Circuit Breaker: 20%
- Required Stop-Loss on all trades
| Document | Description |
|---|---|
| Master Design | Complete system design |
| Implementation Plan | 5-phase roadmap |
| Multi-Agent Architecture | Agent specifications |
| Risk Management | Risk rules engine |
| Kraken API Reference | Exchange integration |
- Language: Python 3.11+
- Database: TimescaleDB (PostgreSQL extension)
- LLM Local: Ollama (Qwen 2.5 7B)
- LLM API: OpenAI, Anthropic, xAI, DeepSeek
- Dashboard: React (planned)
- Exchange: Kraken REST/WebSocket API